Sains Malaysiana 42(6)(2013):
855–862
Heat Transfer Analysis for Falkner-Skan Boundary Layer Flow
Past a Stationary Wedge
with Slips Boundary Conditions Considering
Temperature-dependent Thermal Conductivity
(Analisis Pemindahan Haba bagi Aliran Lapisan Sempadan
Falkner-Skan Melintasi Suatu Baji Pegu
dengan Syarat Sempadan Gelinciran serta
Keberaliran Haba Bersandar-Suhu)
A.A. Mutlag*, Md. Jashim Uddin & Ahmad Izani Ismail
School of Mathematical Sciences, Universiti Sains Malaysia
11800 Penang, Malaysia
A.A. Mutlag*
Mathematics Department, College of Education for Pure
Science
AL- Anbar University, AL- Anbar, Iraq
Md. Jashim Uddin
Mathematics Department, American International
University-Bangladesh
Banani, Dhaka 1213, Bangladesh
M.A.A. Hamad4
Mathematics Department, Faculty of Science, Assiut
University, Assiut 71516
Egypt
Received: 13 June 2012/Accepted: 27 September 2012
ABSTRACT
We studied the problem of heat transfer for Falkner-Skan boundary
layer flow past a stationary wedge with momentum and thermal slip boundary
conditions and the temperature dependent thermal conductivity. The governing
partial differential equations for the physical situation are converted into a
set of ordinary differential equations using scaling group of transformations.
These are then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth
order numerical method. The momentum slip parameter d leads to increase in the
dimensionless velocity and the rate of heat transfer whilst it decreases the
dimensionless temperature and the friction factor. The thermal slip parameter
leads to the decrease rate of heat transfer as well as the dimensionless
temperature. The dimensionless velocity, rate of heat transfer and the friction
factor increase with the Falkner-Skan power law parameter m but the
dimensionless fluid temperature decreases with m. The dimensionless fluid
temperature and the heat transfer rate decrease as the thermal conductivity
parameter A increases. Good agreements are found between the numerical results
of the present paper with published results.
Keywords: Falkner-Skan; momentum slip; thermal slip; scaling group
of transformation; temperature dependent thermal conductivity
ABSTRAK
Kami mengkaji permasalahan pemindahan haba bagi aliran lapisan
sempadan Falkner-Skan melintasi suatu baji pegun dengan syarat sempadan
gelinciran momentum dan haba serta kekonduksian haba bersandar-suhu. Persamaan
pembezaan separa menakluk bagi situasi fizik dijelmakan kepada suatu set
persamaan pembezaan biasa menggunakan penjelmaan kumpulan penskalaan. Set
persamaan pembezaan biasa tersebut kemudiannya diselesaikan secara berangka
menggunakan kaedah berangka Runge-Kutta-Fehlberg keempat-kelima. Parameter
gelinciran momentum δ didapati meningkat terhadap halaju tak berdimensi
dan kadar pemindahan haba. Parameter gelinciran momentum didapati berkurang
terhadap suhu tak berdimensi dan juga tegasan ricih. Halaju tak berdimensi,
kadar pemindahan haba dan pekali tegasan ricih meningkat terhadap parameter
hukum kuasa Falkner-Skan m, tetapi suhu bendalir menurun dengan m. Suhu
bendalir tak berdimensi dan kadar pemindahan haba menurun apabila parameter
konduktiviti haba A meningkat. Didapati keputusan berangka dalam kertas ini
menepati keputusan yang telah diterbitkan sebelum ini.
Kata kunci: Falkner-Skan; gelinciran haba; gelinciran momentum; kekonduksian
haba bersandar suhu; penjelmaan kumpulan penskalaan
REFERENCES
Abel, M.S., Siddheshwar, P.G. & Mahesha, N.
2009. Effects of thermal buoyancy and variable thermal conductivity on the MHD
flow and heat transfer in a power-law fluid past a vertical stretching sheet in
the presence of a non-uniform heat source. International
Journal of Non-Linear Mechanics 44: 1-12.
Afzal, N. 2010. Falkner–Skan equation for
flow past a stretching surface with suction or blowing, Analytical solutions. Applied Mathematics and Computation 217:
2724-2736.
Ahmad, N., Siddiqui, Z.U. & Mishra, M.K.
2010. Boundary layer flow and heat transfer past a stretching plate with
variable thermal conductivity. International
Journal of Non-Linear Mechanics 45: 306-309.
Alizadeh, E., Farhadi, M., Sedighi, K.,
Ebrahimi-Kebria, H.R. & Ghafourian, A. 2009. Solution of the
Falkner–Skan equation for wedge by adomian decomposition method. Communications in Nonlinear Science and
Numerical Simulation 14: 724-733.
Aziz, A., Uddin, M.J., Hamad, M.A.A. &
Ismail, A.I.M. 2012. MHD flow over an inclined radiating plate with the
temperature-dependent thermal conductivity, variable reactive index, and heat
generation. Heat Transfer-Asian Research 41: 241-259.
Bachok, N. & Ishak, A. 2011. Similarity
solutions for the stagnation-point flow and heat transfer over a nonlinearly
stretching/shrinking sheet. Sains
Malaysiana 40: 1297-1300.
Bararnia, H., Ghasemi, E., Soleimani, S.,
Ghotbi, A.R. & Ganji, D.D. 2012. Solution of the Falkner–Skan wedge
flow by HPM–Pade’ method. Advances in Engineering Software 43: 44-52.
Butcher, J.C. 2008. Numerical Methods for Ordinary Differential Equations. England:
John Wiley & Sons. Ltd.
Chen, S.S., Chow, C.Y. & Uberoi, M.S. 1981.
Effect of slip boundary condition on flow computation in the presence of
rotational body forces. International
Journal of Computers and Fluids 9: 389-393.
Falkner, V.M. & Skan, S.W. 1931. Some
approximate solutions of the boundary-layer equations. Philosophical
Magazine 12: 865-896.
Hayat, T., Khan, M. & Ayub, M. 2007. The
effect of the slip condition on flows of an Oldroyd 6-constant fluid. Journal Computational and Applied
Mathematics 202: 402-413.
Khan, W.A., Uddin, M.J. & A.I. Md. Ismail.
2012. Effect of momentum slip on double-diffusive free convective boundary
layer flow of a nanofluid past a convectively heated vertical plate. Journal of Nanoengineering and Nanosystem 226: 99-110.
Liu, C.S. & Chang, J.R. 2008. The Lie-group shooting
method for multiple-solutions of Falkner–Skan equation under suction–injection conditions. International Journal of Non-Linear
Mechanics 43: 844-851.
Li, Y. & An, R. 2011. Two-level pressure projection
finite element methods for Navier–Stokes equations with nonlinear slip
boundary conditions. Applied Numerical
Mathematics 61: 285-297.
Mierzwiczak, M. & Kołodziej, J.A. 2011. The
determination temperature-dependent thermal conductivity as inverse steady heat
conduction problem. International Journal
of Heat and Mass Transfer 54: 790-796.
Parand, K., Rezaei, A.R. & Ghaderi, S.M. 2011. An
approximate solution of the MHD Falkner–Skan flow by Hermite functions
pseudospectral method. Communications in
Nonlinear Science and Numerical Simulation 16: 274-283.
Prasad, K.V., Vajravelu, K. & Datti, P. S. 2010.The
effects of variable fluid properties on the hydro-magnetic flow and heat
transfer over a non-linearly stretching sheet. International Journal of Thermal Sciences 49: 603-610.
Postelnicu, A. & Pop, I. 2011. Falkner–Skan
boundary layer flow of a power-law fluid past a stretching wedge. Applied Mathematics and Computation 217:
4359-4368.
Rahman, M.M. & Eltayeb, I.A. 2011. Convective slip flow
of rarefied fluids over a wedge with thermal jump and variable transport
properties. International Journal of
Thermal Sciences 50: 468-479.
Rajagopal, K.R., Gupta, A.S. & Na, T.Y. 1983. A note on
the Falkner–Skan flows of a non- Newtonian fluid. International Journal of Non-Linear Mechanics 18: 313-320.
Shang, D. 2010. Theory
of Heat Transfer with Forced Convection Film Flows. Chapter 7. New York:
Springer.
Uddin, M.J., Khan, W.A. & A.I. Md. Ismail. 2012. Lie
group analysis of natural convective flow from a convectively heated upward
facing radiating permeable horizontal plate in porous media filled with
nanofluid. Journal of Applied
Mathematics. Article ID 648675, 18 pages, doi:10.1155/2012/648675.
Watanabe, T. 1990. Thermal boundary layers over a wedge with
uniform suction or injection in forced flow. Acta Mechanica 83: 119-126.
White, F.M. 1991. Viscous Fluid Flow. 2nd ed. New York: McGraw-Hill. pp. 242-249.
Xiao, Y., Xin, Z. & Wu, J. 2009. Vanishing viscosity
limit for the 3D magnetohydrodynamic system with a slip boundary condition. Journal of Functional Analysis 257:
3375-3394.
Yacob, N.A., Ishak, A. & Pop, I. 2011. Falkner- Skan
problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences 50: 133-139.
Yih, K.A. 1998. Uniform suction/blowing effect on forced
convection about a wedge: Uniform heat flux. Acta Mechanica 128: 173-181.
*Corresponding
author; email: alassafi2005@yahoo.com
|