Sains Malaysiana 42(6)(2013): 855–862

 

Heat Transfer Analysis for Falkner-Skan Boundary Layer Flow Past a Stationary Wedge

with Slips Boundary Conditions Considering Temperature-dependent Thermal Conductivity

(Analisis Pemindahan Haba bagi Aliran Lapisan Sempadan Falkner-Skan Melintasi Suatu Baji Pegu

dengan Syarat Sempadan Gelinciran serta Keberaliran Haba Bersandar-Suhu)

 

 

A.A. Mutlag*, Md. Jashim Uddin & Ahmad Izani Ismail

School of Mathematical Sciences, Universiti Sains Malaysia

11800 Penang, Malaysia

 

A.A. Mutlag*

Mathematics Department, College of Education for Pure Science

AL- Anbar University, AL- Anbar, Iraq

 

Md. Jashim Uddin

Mathematics Department, American International University-Bangladesh

Banani, Dhaka 1213, Bangladesh

 

M.A.A. Hamad4

Mathematics Department, Faculty of Science, Assiut University, Assiut 71516

Egypt

 

Received: 13 June 2012/Accepted: 27 September 2012

 

ABSTRACT

We studied the problem of heat transfer for Falkner-Skan boundary layer flow past a stationary wedge with momentum and thermal slip boundary conditions and the temperature dependent thermal conductivity. The governing partial differential equations for the physical situation are converted into a set of ordinary differential equations using scaling group of transformations. These are then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method. The momentum slip parameter d leads to increase in the dimensionless velocity and the rate of heat transfer whilst it decreases the dimensionless temperature and the friction factor. The thermal slip parameter leads to the decrease rate of heat transfer as well as the dimensionless temperature. The dimensionless velocity, rate of heat transfer and the friction factor increase with the Falkner-Skan power law parameter m but the dimensionless fluid temperature decreases with m. The dimensionless fluid temperature and the heat transfer rate decrease as the thermal conductivity parameter A increases. Good agreements are found between the numerical results of the present paper with published results.

 

Keywords: Falkner-Skan; momentum slip; thermal slip; scaling group of transformation; temperature dependent thermal conductivity

 

ABSTRAK

Kami mengkaji permasalahan pemindahan haba bagi aliran lapisan sempadan Falkner-Skan melintasi suatu baji pegun dengan syarat sempadan gelinciran momentum dan haba serta kekonduksian haba bersandar-suhu. Persamaan pembezaan separa menakluk bagi situasi fizik dijelmakan kepada suatu set persamaan pembezaan biasa menggunakan penjelmaan kumpulan penskalaan. Set persamaan pembezaan biasa tersebut kemudiannya diselesaikan secara berangka menggunakan kaedah berangka Runge-Kutta-Fehlberg keempat-kelima. Parameter gelinciran momentum δ didapati meningkat terhadap halaju tak berdimensi dan kadar pemindahan haba. Parameter gelinciran momentum didapati berkurang terhadap suhu tak berdimensi dan juga tegasan ricih. Halaju tak berdimensi, kadar pemindahan haba dan pekali tegasan ricih meningkat terhadap parameter hukum kuasa Falkner-Skan m, tetapi suhu bendalir menurun dengan m. Suhu bendalir tak berdimensi dan kadar pemindahan haba menurun apabila parameter konduktiviti haba A meningkat. Didapati keputusan berangka dalam kertas ini menepati keputusan yang telah diterbitkan sebelum ini.

 

Kata kunci: Falkner-Skan; gelinciran haba; gelinciran momentum; kekonduksian haba bersandar suhu; penjelmaan kumpulan penskalaan

 

REFERENCES

Abel, M.S., Siddheshwar, P.G. & Mahesha, N. 2009. Effects of thermal buoyancy and variable thermal conductivity on the MHD flow and heat transfer in a power-law fluid past a vertical stretching sheet in the presence of a non-uniform heat source. International Journal of Non-Linear Mechanics 44: 1-12.

Afzal, N. 2010. Falkner–Skan equation for flow past a stretching surface with suction or blowing, Analytical solutions. Applied Mathematics and Computation 217: 2724-2736.

Ahmad, N., Siddiqui, Z.U. & Mishra, M.K. 2010. Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-Linear Mechanics 45: 306-309.

Alizadeh, E., Farhadi, M., Sedighi, K., Ebrahimi-Kebria, H.R. & Ghafourian, A. 2009. Solution of the Falkner–Skan equation for wedge by adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation 14: 724-733.

Aziz, A., Uddin, M.J., Hamad, M.A.A. & Ismail, A.I.M. 2012. MHD flow over an inclined radiating plate with the temperature-dependent thermal conductivity, variable reactive index, and heat generation. Heat Transfer-Asian Research 41: 241-259.

Bachok, N. & Ishak, A. 2011. Similarity solutions for the stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet. Sains Malaysiana 40: 1297-1300.

Bararnia, H., Ghasemi, E., Soleimani, S., Ghotbi, A.R. & Ganji, D.D. 2012. Solution of the Falkner–Skan wedge flow by HPM–Pade’ method. Advances in Engineering Software 43: 44-52.

Butcher, J.C. 2008. Numerical Methods for Ordinary Differential Equations. England: John Wiley & Sons. Ltd.

Chen, S.S., Chow, C.Y. & Uberoi, M.S. 1981. Effect of slip boundary condition on flow computation in the presence of rotational body forces. International Journal of Computers and Fluids 9: 389-393.

Falkner, V.M. & Skan, S.W. 1931. Some approximate solutions of the boundary-layer equations. Philosophical Magazine 12: 865-896.

Hayat, T., Khan, M. & Ayub, M. 2007. The effect of the slip condition on flows of an Oldroyd 6-constant fluid. Journal Computational and Applied Mathematics 202: 402-413.

Khan, W.A., Uddin, M.J. & A.I. Md. Ismail. 2012. Effect of momentum slip on double-diffusive free convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Journal of Nanoengineering and Nanosystem 226: 99-110.

Liu, C.S. & Chang, J.R. 2008. The Lie-group shooting method for multiple-solutions of Falkner–Skan equation under suction–injection conditions. International Journal of Non-Linear Mechanics 43: 844-851.

Li, Y. & An, R. 2011. Two-level pressure projection finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions. Applied Numerical Mathematics 61: 285-297.

Mierzwiczak, M. & Kołodziej, J.A. 2011. The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem. International Journal of Heat and Mass Transfer 54: 790-796.

Parand, K., Rezaei, A.R. & Ghaderi, S.M. 2011. An approximate solution of the MHD Falkner–Skan flow by Hermite functions pseudospectral method. Communications in Nonlinear Science and Numerical Simulation 16: 274-283.

Prasad, K.V., Vajravelu, K. & Datti, P. S. 2010.The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. International Journal of Thermal Sciences 49: 603-610.

Postelnicu, A. & Pop, I. 2011. Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge. Applied Mathematics and Computation 217: 4359-4368.

Rahman, M.M. & Eltayeb, I.A. 2011. Convective slip flow of rarefied fluids over a wedge with thermal jump and variable transport properties. International Journal of Thermal Sciences 50: 468-479.

Rajagopal, K.R., Gupta, A.S. & Na, T.Y. 1983. A note on the Falkner–Skan flows of a non- Newtonian fluid. International Journal of Non-Linear Mechanics 18: 313-320.

Shang, D. 2010. Theory of Heat Transfer with Forced Convection Film Flows. Chapter 7. New York: Springer.

Uddin, M.J., Khan, W.A. & A.I. Md. Ismail. 2012. Lie group analysis of natural convective flow from a convectively heated upward facing radiating permeable horizontal plate in porous media filled with nanofluid. Journal of Applied Mathematics. Article ID 648675, 18 pages, doi:10.1155/2012/648675.

Watanabe, T. 1990. Thermal boundary layers over a wedge with uniform suction or injection in forced flow. Acta Mechanica 83: 119-126.

White, F.M. 1991. Viscous Fluid Flow. 2nd ed. New York: McGraw-Hill. pp. 242-249.

Xiao, Y., Xin, Z. & Wu, J. 2009. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. Journal of Functional Analysis 257: 3375-3394.

Yacob, N.A., Ishak, A. & Pop, I. 2011. Falkner- Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences 50: 133-139.

Yih, K.A. 1998. Uniform suction/blowing effect on forced convection about a wedge: Uniform heat flux. Acta Mechanica 128: 173-181.

 

 

*Corresponding author; email: alassafi2005@yahoo.com

 

previous