Sains Malaysiana 42(6)(2013): 845–853
One-Step
Exponential-rational Methods for the Numerical Solution of First Order Initial
Value Problems
(Kaedah Eksponen-Bisbah Satu Langkah Bagi Penyelesaian Masalah
Nilai Awal
Peringkat Pertama Secara Berangka)
Teh Yuan Ying*
School of Quantitative Sciences, College of Arts and
Sciences, Universiti Utara Malaysia
06010 Sintok, Kedah Darul Aman, Malaysia
Nazeeruddin Yaacob
Department of Mathematics, Faculty of Science, Universiti
Teknologi Malaysia
81310 Skudai, Johor Darul Ta’zim, Malaysia
Received: 27 June 2012/Accepted: 2 October 2012
ABSTRACT
In this study, a new class of exponential-rational methods (ERMs)
for the numerical solution of first order initial value problems has been
developed. Developments of third order and fourth order ERMs,
as well as their corresponding local truncation error
have been presented. Each ERM was found to be consistent with the
differential equation and L-stable. Numerical experiments showed that the third
order and fourth order ERMs generates more accurate numerical
results compared with the existing rational methods in solving first order
initial value problems.
Keywords: Exponential function; exponential-rational method;
problem whose solution possesses singularity; rational function; rational
method
ABSTRAK
Dalam kajian ini, satu kelas kaedah
eksponen-nisbah untuk penyelesaian masalah nilai awal peringkat pertama secara
berangka telah dibangunkan. Pembangunan kaedah eksponen-nisbah yang
berperingkat ketiga dan keempat telah dibentangkan bersama dengan ralat
pangkasan setempat yang sepadan. Setiap kaedah eksponen-nisbah didapati
adalah tekal dengan persamaan pembezaan dan mempunyai kestabilan jenis L.
Eksperimen secara berangka telah menunjukkan bahawa kaedah eksponen-nisbah
berperingkat ketiga dan keempat menjana keputusan berangka yang lebih tepat
berbanding dengan kaedah-kaedah nisbah yang sedia ada dalam menyelesaikan
masalah nilai awal peringkat pertama.
Kata kunci: Fungsi
eksponen; fungsi nisbah; kaedah eksponen-nisbah; kaedah nisbah; masalah dengan
penyelesaian yang mempunyai singular
REFERENCES
Butcher, J.C. 2003. Numerical Methods for
Ordinary Differential Equations. West Sussex: John Wiley & Sons,
Ltd.
Fatunla, S.O. 1976. A new
algorithm for numerical solution of ordinary differential equations. Computers
and Mathematics with Applications 2(3/4): 247-253.
Fatunla, S.O. 1982. Non linear multistep methods for initial value problems. Computers and Mathematics with
Applications 8(3): 231-239.
Fatunla, S.O. 1986. Numerical Treatment of Singular Initial Value Problems. Computers
and Mathematics with Applications 12B(5/6): 1109 – 1105.
Ikhile, M.N.O. 2001. Coefficients for studying one-step
rational schemes for IVPs in ODEs: . Computers and
Mathematics with Applications 41: 769-781.
Ikhile, M.N.O. 2002. Coefficients for studying one-step
rational schemes for IVPs in ODEs: II. Computers and Mathematics with
Applications 44: 545-557.
Ikhile, M.N.O. 2004. Coefficients for studying one-step
rational schemes for IVPs in ODEs: III. Computers and Mathematics with
Applications 47: 1463-1475.
Lambert, J.D. 1973. Computational Methods in Ordinary Differential
Equations. London: John Wiley & Sons. Ltd.
Lambert, J.D. 1974. Two unconventional classes of methods for
stiff systems. In Stiff Differential Equations, edited
by Willoughby, R. A. New York: Plenum Press.
Lambert, J.D. 1991. Numerical Methods for Ordinary
Differential Systems. Chichester: John Wiley & Sons. Ltd.
Lambert, J.D. & Shaw, B. 1965. On the numerical solution of y´ = f (x,y) by a class of formulae based on rational y´
approximation. Mathematics of Computation 19: 456-462.
Luke, Y.L., Fair, W. & Wimp, J.
1975. Predictor-corrector
formulas based on rational interpolants. Computers
and Mathematics with Applications 1: 3-12.
Okosun, K.O. & Ademiluyi, R.A.
2007a. A two step second order inverse
polynomial methods for integration of differential equations with
singularities. Research Journal of Applied Sciences 2(1):
13-16.
Okosun, K.O. & Ademiluyi, R.A.
2007b. A three step
rational methods for integration of differential equations with singularities. Research Journal of Applied Sciences 2(1): 84-88.
Ramos, H. 2007. A non-standard explicit
integration scheme for initial-value problems. Applied Mathematics
and Computation 189: 710-718.
van Niekerk, F.D. 1987. Non-linear one-step
methods for initial value problems. Computers and Mathematics with Applications 13(4): 367-371.
van Niekerk, F.D. 1988. Rational one-step
methods for initial value problems. Computers and Mathematics with
Applications 16(12): 1035-1039.
Wambecq, A. 1976. Nonlinear methods in solving ordinary
differential equations. Journal of Computational
and Applied Mathematics 2(1): 27-33.
Wu, X.Y. 1998. A sixth-order a-stable
explicit one-step method for stiff systems. Computers
and Mathematics with Applications 35(9): 59-64.
Yaakub, A.R. & Evans, D.J. 2003. New L-stable modified
trapezoidal methods for the initial value problems. International Journal of
Computer Mathematics 80(1): 95-104.
*Corresponding
author; email: yuanying@uum.edu.my
|