Sains Malaysiana 42(8)(2013):
1121–1129
Penghasilan Poliol Minyak Sawit Olein Secara Hidrolisis Selanjar
dan Berkelompok
(Palm Olein Polyols
Production by Batch and Continuous Hydrolisis)
Darfizzi Derawi* & Jumat
Salimon
Pusat Pengajian Sains Kimia
dan Teknologi Makanan, Fakulti Sains dan Teknologi
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia
Darfizzi Derawi*
Jabatan Sains, Fakulti Sains,
Teknologi dan Pembangunan Insan (FSTPi)
Universiti Tun Hussein Onn
Malaysia, 86400 Parit Raja, Batu Pahat, Johor Darul Takzim
Malaysia
Received: 19 January 2012 / Accepted:
25 January 2013
ABSTRAK
Sebatian
poliol minyak sawit olein (di-hidroksi-POo)
(70% hasil) disintesis melalui pembukaan gelang oksirana minyak sawit olein
terepoksida (EPOo)
secara hidrolisis selanjar dan berkelompok. Hasil
optimum pembukaan gelang oksirana (97.2%) bagi kedua-dua tindak balas selama 90
min (tindak balas selanjar) dan 75 min (tindak balas berkelompok) dengan
menggunakan mangkin asid perklorik 3% v/wt. Spektrum transformasi Fourier
inframerah (FTIR) di-hidroksi-POo menunjukkan kehadiran puncak lebar getaran regangan kumpulan
hidroksil pada nombor gelombang 3429 cm-1,
menunjukkan sebatian poliol telah berjaya dihasilkan. Spektrum
resonan magnetik nukleus-karbon (13C-NMR)
di-hidroksi-POo telah menunjukkan kehadiran
puncak karbon yang terikat dengan kumpulan hidroksil (74.5 ppm). Spektrum resonan magnetik nukleus-proton (1H-NMR) di-hidroksi-POo telah menunjukkan kehadiran
puncak proton yang terikat pada karbon poliol (3.4 ppm) dan proton pada
kumpulan hidroksil (4.6 ppm). Kelikatan kinematik produk poliol (nilai
hidroksil sebanyak 110.7 mgKOH/g minyak) adalah 1435.2 cSt (40oC) dan 55.2 cSt (100oC) dengan indeks kelikatan
78.
Kata kunci: hidrolisis; minyak sawit
olein terepoksida; poliol minyak sawit olein
ABSTRACT
Di-hydroxy-POo (70% of yield) was synthesised
through oxirane cleavage of epoxidized palm olein (EPOo)
by using continuous and batch hydrolysis process. Both hydrolysis processes
obtained an optimum oxirane cleavage yield (97.2%) by using perchloric acid 3%
v/wt for 90 min (continuous process) and 75 min (batch process). The presence
of stretching vibration broadband peak of hydroxyl at wavenumber 3429 cm-1 shown on the Fourier
transformation infra-red (FTIR) spectrum, indicate formation of polyols
compound. The carbon-nuclear magnetic resonance (13C-NMR) spectrum of di-hydroxy-POo showed the presence of
carbon peak bonded with hydroxyl (74.5 ppm). The proton-nuclear magnetic
resonance (1H-NMR)
spectrum of di-hydroxy-POo showed the presence of proton
peak attached to the carbon of polyols (3.4 ppm) and proton of hydroxyl (4.6
ppm). Kinematic viscosity of polyols product (110.7 mgKOH/g
oil) were 1435.2 cSt (40oC)
and 55.2 cSt (100oC)
with the viscosity index of 78.
Keywords:
Epoxidized palm olein; hydrolysis; palm olein polyols
REFERENCES
A.O.C.S.
1998. Official Methods and Recommended Practices of AOCS. Illionis:
AOCS.
Cheong,
M.Y., Ooi, T.L., Ahmad, S., Wan Yunus, W.M.Z. & Kuang, D. 2009. Synthesis and characterization of palm-based resin for UV coating. J. Appl. Polymer Science 111(5): 2353-2361.
Darfizzi Derawi & Jumat Salimon. 2010.
Optimization on epoxidation of palm olein by using performic acid. E-Journal
of Chemistry 7(4): 1440-1448.
Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of cottonseed oil by aqueous hydrogen peroxide
catalysed by liquid inorganic acids. Bioresource Technology 99(2008):
3737-3744.
Emery. 1983. Emery Analytical Testing Procedures. USA: Emery Industries.
Gunstone,
F.D. 2004. The Chemistry of Oils and Fats: Sources, Composition, Properties
and Uses. UK: Blackwell Publishing Ltd.
Housecroft, C.E. &
Sharpe, A.G. 2004. Inorganic Chemistry. 2nd ed. USA: Prentice Hall.
Huang, J.
& Zhang, L. 2002. Effects of NCO/OH molar ratio on structure and properties
of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43(2002): 2287-2294.
Jumat
Salimon, Nadia Salih & Emad Yousif. 2011. Chemically modified biolubricant
basestocks from epoxidized oleic acid: Improved low temperature properties and
oxidative stability. J. Saudi Chem. Soc. 15: 195-201.
Noureddini,
H. & Medikonduru, V. 1997. Glycerolysis of fats and
methyl esters. J. Am. Oil Chem. Soc. (JAOCS) 74: 419-425.
O’Brien,
R.D. 1998. Fats and Oils: Formulating and Processing for Applications.
Switzerland: Technomic Publishing AG.
Paquot, C.
1979. Standard Methods for the Analysis of Oils, Fats and
Derivatives Part-1. 5th ed. Germany: Pergamon Press.
Pavia, D.L., Lampman, G.M. & Kriz, G.S. 2001. Introduction to Spectroscopy. USA: Thomson Learning,
Inc.
Rozman, H.D., Yeo, Y.S. &
Tay, G.S. 2003. The mechanical and physical properties of polyurethane
composites based on rice husk and polyethylene glycol. Polymer Testing 22:
617-623.
Salmiah, A., Parthiban, S. & Dieter, W. 1995. Paten
Singapura (55223), Malaysia (MY-114189-A) dan Indonesia (patent application:
P962884).
Scrimgeour,
C. 2005. Chemistry of Fatty Acids. 6th ed.
Scotland: Wiley & Sons Inc.
Siwayanan,
P., Ooi, T.L., Shaari, N.Z.K., Ahmad, S., Wiese, D. & Chua, M.C. 1999. Recent development in palm-based polyols. Paper read at
PORIM International Palm Oil Congress (Oleochemicals), at Kuala Lumpur.
Socrates, G.
2001. Infrared and Raman Characteristic Group Frequencies. 3rd ed. Chichester: John Wiley & Sons Ltd.
Stachowiak,
G.W. & Batchelor, A.W. 2005. Engineering Tribology. Ed. Ke-3. UK:
Elsevier Inc.
Tanaka, R., Hirose, S. & Hatakeyama, H. 2007. Preparation
and characterization of polyurethane foams using a palm oil-based polyol. Bioresource
Technology 99(2008): 3810-3816.
Velayutham,
T.S., Abd Majid, W.H., Ahmad, A.B., Kang, G.Y. & Gan, S.N. 2009. Synthesis
and characterization of polyurethane coatings derived from polyols synthesized
with glycerol, phthalic anhydride and oleic acid. Porgcoat. 66: 367-371.
Wade, L.G. 2006. Organic
Chemistry. 6th ed. United States: Pearson Prentice Hall.
*Corresponding author ; email: darfizzi@uthm.edu.my
|