Sains Malaysiana 43(10)(2014):
1573–1582
Structural
and Electrical Properties of Nb-substituted LiTa1-xNbxO3
(Sifat Struktur dan Elektrik bagi LiTa1-xNbxO3 yang
Digantikan dengan Nb)
K.Y. BAK1, K.B. TAN1*, C.C. KHAW2, Z. ZAINAL1, P.Y. TAN1 & M.P. CHON1
1Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia
43400
Serdang, Selangor, Malaysia
2Department
of Mechanical and Material Engineering, Faculty of Engineering and Science
Universiti
Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur, Malaysia
Received:
21 August 2013/Accepted: 10 February 2014
ABSTRACT
Single phase LiTa1-xNbxO3 solid solution with 0.00 ≤ x ≤ 1.00 was
successfully synthesised via conventional solid-state method at 950°C for 24 h.
These materials were refined and fully indexed with hexagonal crystal system,
space group of R3c; lattice parameters, a ranging from 5.1410(6) Ǻ to
5.1471(3) Ǻ and c ranging from 13.7467(1) Ǻ to 13.8341(1) Ǻ;
with α = β = 90° and γ = 120°. Variation of the lattice
parameters in these materials was found to be negligibly small throughout the
subsolidus solution. No thermal event was detected within the studied
temperature range of 50 to 1000°C. The electrical properties of samples were
characterised by AC impedance analyser, HP4192A at temperature
ranging from room temperature to 850°C over a frequency range of 5 Hz to 13
MHz. LiTa1-xNbxO3 materials
exhibited bulk response with associated capacitances in the order of 10-12 F
cm-1 and the temperature-dependent conductivities were found to
increase with increasing temperatures. The results showed that LiTa1-xNbxO3 samples
were of typical ferroelectrics.
Keywords: Ferroelectric; impedance; solid solution; solid-state
method
ABSTRAK
Larutan pepejal LiTa1-xNbxO3 tulen dengan 0.00 ≤ x ≤ 1.00 telah berjaya
disintesis melalui kaedah penyediaan keadaan pepejal pada 950°C selama 24 jam.
Bahan-bahan tersebut dapat diindeks sepenuhnya dalam sistem kristal heksagon dengan
kumpulan ruangan, R3c; nilai parameter kekisi, a, b dalam julat 5.1410(6)
Ǻ ke 5.1471(3) Ǻ dan c dalam lingkungan 13.7467(1) Ǻ ke
13.8341(1) Ǻ; α = β = 90° dan γ = 120°. Perubahan
parameter kekisi larutan pepejal LiTa1-xNbxO3 didapati adalah terhad. Tiada sebarang
keadaan terma dikesan daripada suhu 50 sehingga 1000°C. Sifat elektrik
dicirikan dengan penganalisis AC impedans, HP4192A daripada suhu
bilik hingga 850°C dalam julat frekuensi antara 5 Hz hingga 13 MHz. Bahan-bahan
dalam siri larutan pepejal menunjukkan sifat pukal dengan kapasitan dalam
tertib 10-12 F cm-1. Konduktiviti bagi sampel
ini didapati meningkat dengan peningkatan suhu. Keputusan
analisis menunjukkan siri larutan pepejal LiTa1-xNbxO3 dengan 0.00 ≤ x ≤ 1.00
bersifat jenis bahan ferroelektrik.
Kata kunci: Ferroelektrik; impedans; kaedah
penyediaan keadaan pepejal; larutan pepejal
RUJUKAN
Abrahams, S.C., Hamilton,
W.C. & Reddy, J.M. 1966. Ferroelectric lithium niobate, single crystal
neutron diffraction study. Journal of Physics and Chemistry of Solids 27: 1013-1018.
Ballman, A.A. & Brown, H. 1972. Ferroelectric domain reversal in lithium metatantalate. Ferroelectrics 4: 189-194.
Ekhelikar, S. & Bichile, G.K. 2004.
Synthesis and characterization of (Bi2O3)1-x(Y2O3)x and
(Bi2O3)1-x(Gd2O3)x solid
solutions. Bulletin of Material Science 1: 19-22.
Evans, C.R., Stanley, S.M.,
Percival, C.J., McHalea, G. & Newton, M.I. 2006. Lithium tantalate layer guided plate mode
sensors. Sensors and Actuators A 132:
241-244.
Gervais, F. & Fonseca, V. 1997. Handbook of Optical Constants of Solids, Lithium Tantalate
(LiTaO3). Massachusettes: Academic Press. pp 777-805.
Gopalan, V., Sanford, N.A.,
Aust, J.A., Kitamura, K. & Furukawa, Y. 2001. Crystal growth,
characterization, and domain studies in lithium niobate and lithium tantalate
ferroelectrics (Vol 4, Chapter 2). In The Handbook of Advanced
Electronic and Photonic Material and Devices, edited by Hari Singh Nalwa.
Massachusettes: Academic Press. pp. 57-114.
Griffiths, P.R. & Haseth, J.A.D. 2007. Introduction to vibrational spectroscopy. In Fourier Transform Infrared
Spectroscopy. Canada: John Wiley & Sons, Ltd. pp. 1-6.
He, X., Li, K., Liu, M.,
He, Y., Zhang, X., Zhao, Y. & Xue, D. 2008. An optical spectroscopy study
of defects in lithium tantalate single crystals. Optics
Communications 281: 2531-2534.
Hsu, R., Maslen, E.N. &
Ishizawa, N. 1997. Synchrotron X-ray studies
of LiNbO3 and
LiTaO3. Acta Crystallographica, Section B: Structural Science 53: 420.
Irvine, J.T.S., Sinclair,
D.C. & West, A.R. 1990. Electroceramics: Characterization by impedance spectroscopy. Advanced
Materials 2: 132-138.
Iyi, N., Kitamura, K., Izumi, F., Yamamoto, J.
K., Hayashi, T., Asano, H. & Kimura, S. 1992. Comparative
study of defect structures in lithium niobate with different compositions. Journal of Solid State Chemistry 101: 340-352.
Kaczmarek, S.M.,
Swirkowicz, M., Jablonski, R., Lukasiewicz, T. & Kwasny, M. 2000. Growth and characterization of lithium
tantalate single crystals doped with Ho, Tm, Nd, Yb, Pr and doped by diffusion with Cr and Cu. Journal of Alloys and Compounds 300-301:
322-328.
Karhunen, T., Lahde, A.,
Leskinen, J., Buchel, R. & Waser, O. 2011. Transition metal-doped lithium titanium oxide
nanoparticles made using flame spray pyrolysis. ISRN Nanotechonology 2001,
Article ID 180821: 1-6.
Khaw, C.C., Tan, K.B. &
Lee, C.K. 2008. High temperature
dielectric properties of cubic bismuth zinc tantalates. Ceramics
International 35: 1473-1480.
Kitamura,
K., Yamamoto, J.K., Iyi, N. & Kirnura, S. 1992. Stoichiometric
LiNbO3 single crystal growth by double crucible Czochralski method using
automatic power supply system. Journal of Crystal Growth 116:
327-332.
Mark,
L. 2001. Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147
GHz. Applied Physic Letters 79: 1342-1345.
Megaw,
H.D. 1968. A note on the structure of lithium niobate,
LiNbO3. Acta Crystallographica, Section A 24: 583-588.
Palatnikova, M.N., Biryukovaa, I.V., Sidorova, N.V.,
Denisovb, A.V., Kalinnikova, V.T., Smithc, P.G.R. & Shurd, V.Y. 2006. Growth and concentration dependencies of rare-earth doped lithium niobate
single crystals. Journal of Crystal Growth 291: 390-397.
Samuel, V., Gaikwad, A.B., Jadhav, A.D., Mirji, S.A. &
Ravi, V. 2007. A novel technique to
prepare LiNbO3 at low temperature. Materials Letters 61: 765-766.
Satapathy, S., Verma, P., Gupta, P.K., Mukherjee, C., Sathe,
V.G. & Varma, K.B.R. 2011. Structural, dielectric and
ferroelectric properties of multilayer lithium tantalate thin films prepared by
sol-gel technique. Thin Solid Films 519: 1803-1808.
Seshadri, R., Smith, M.B., Page, K. & Steigerwald, M.L.
2008. Crystal structure and the paraelectric-to-ferroelectric
phase transition to nanoscale BaTiO3. Journal of the American Chemical
Society 130: 6955-6963.
Tan, M.Y., Tan, K.B., Zainal, Z., Khaw, C.C. & Chen,
S.K. 2012. Subsolidus formation and impedance spectroscopy studies of
materials in the (Bi2O3)1-x(Y2O3)x binary
system. Ceramics International 38: 3403-3409.
Wachs, I.E., Briand, L.E., Jehng, J.M., Burcham, L. &
Gao, X.T. 2000. Molecular structure and reactivity of
the group V metal oxides. Catalysis Today 57: 323-330.
Wan,
Y., Guo, X., Chen, J., Yuan, X., Chu, J. & Li, J. 2002. Optical
properties of nonlinear potassium lithium niobate crystal. Journal of Crystal Growth 235: 248-252.
West,
A.R. 1999. Crystal defects, non-stoichiometry and solid solutions. In Solid
State Chemistry and It Applications. New Jersey: John Wiley & Sons,
Ltd. pp 226-240.
Xue, D., Betzler, K. & Hesse, H. 2000. Dielectric properties of lithium niobate tantalate crystals. Solid State Communications 115: 581-585.
Yao, C.Y., Kao, T.H., Cheng, C.H. & Hurng, W.M. 1995. Studies of electrochemical properties of lithium cobalt oxide. Journal of Power Sources 54: 491-493.
Zhan,
J., Liu, D., Du, W., Wang, Z., Wang, P., Cheng, H., Huang, B. & Jiang, M.
2011. Synthesis and characterization of high crystallinity,
well-defined morphology stoichiometric lithium niobate nanocrystalline. Journal
of Crystal Growth 318: 1121-1124.
*Corresponding
author; email: tankb@science.upm.my
|