Sains Malaysiana 43(12)(2014):
1915–1925
Establishment of Physicochemical Measurements of Water
Polluting Substances via Flow Perturbation Gas Chromatography
(Menentusahkan Tentu-ukur Juzuk Fizika-kimia Bahan-bahan yang Mencemarkan
Air Melalui Kromatografi Gas Aliran Terganggu)
H.H. MOHAMMAD*, SHARIFUDDIN MOHD ZAIN, RASHID ATTA KHAN
& KHALISANNI KHALID
Department of Chemistry, Faculty of Science, University of
Malaya
50603 Kuala Lumpur, Malaysia
Received: 6 December 2013/Accepted: 16 April 2014
ABSTRACT
Spillage of water polluting substances via industrial disaster may
cause pollution to our environment. Thus, reversed-flow gas chromatography (RF-GC)
technique, which applies flow perturbation gas chromatography, was used to
investigate the evaporation and estimate the diffusion coefficients of liquid
pollutants. Selected alcohols (99.9% purity) and its mixtures were used as
samples. The evaporating liquids (stationary phase) were carried out by carrier
gas-nitrogen, 99.9% purity (mobile phase) to the detector. The findings of this
work showed the physicochemical measurements may vary depending on the
composition of water and alcohol mixtures, temperature of the mixtures, as well
as the types of alcohol used. This study implies that there is a variation in
the results based on the concentration, types and temperature of the liquids
that may contribute in the references for future research in the area of
environmental pollution analysis.
Keywords: Alcohol mixtures; evaporation rates; liquid-gas
interphase; liquid pollutants; spillage; vapour pressure
ABSTRAK
Limpahan bahan-bahan pencemaran melalui bencana
industri boleh menyebabkan pencemaran kepada alam sekitar kita. Oleh itu, teknik gas kromatografi aliran
berbalik (KTAB)
yang mengaplikasikan teknik kromatografi gas aliran terganggu digunakan bagi
menentu ukur kadar penyejatan dan menganggar pekali
resapan bahan-bahan pencemar. Alkohol terpilih (99.9% darjah
kepekatan) dan campuran telah digunakan sebagai sampel. Cecair menyejat (fasa penyebaran) telah diangkut oleh gas
pengangkut iaitu nitrogen, 99.9% ketulenan (fasa persampelan) ke pengesan. Keputusan kajian ini menunjukkan ukuran fizika-kimia mungkin
berbeza bergantung kepada komposisi air dan alkohol di dalam campuran, suhu
campuran dan jenis alkohol yang digunakan. Kajian ini menunjukkan bahawa
terdapat perubahan keputusan berasaskan kepada kepekatan, jenis alkohol serta
suhu campuran kajian dan ia boleh menyumbang kepada
rujukan untuk kajian akan datang dalam bidang analisis pencemaran alam sekitar.
Kata kunci: Campuran
alkohol; cecair pencemar; fasa cecair-gas; kadar penyejatan; tekanan wap; tumpahan
REFERENCES
Agathonos, P. & Karaiskakis, G.
1989a. Measurement of
activity coefficients, mass transfer coefficients and diffusion coefficients in
multicomponent liquid mixtures by reversed-flow gas chromatography. Journal
Of Chemical Society, Faraday Transaction 85(6): 1357-1363.
Agathonos, P. & Karaiskakis, G.
1989b. Thermodynamic study
of polymer-solvent systems by reversed-flow gas chromatography. Journal
of Applied Polymer Science 37(8): 2237-2250.
Atta, K.R., Gavril, D. & Karaiskakis, G. 2002. New methodology for the measurement of diffusion coefficients of
pure gases into gas mixtures. Instrumentation Science &
Technology 30(1): 67-78.
Beverley, K.J., Clint, J.H. &
Fletcher, P.D.I. 1999. Evaporation rates of
pure liquids measured using a gravimetric technique. Physical Chemistry
Chemical Physics 1: 149-153.
Birdi, K.S., Vu, D.T. & Winter, A. 1989. A study of the
evaporation rates of small water drops placed on a solid surface. Journal of
Physical Chemistry 93: 3702-3703.
Brown, I., Fock, W. & Smith, F.
1969. The thermodynamic
properties of solutions of normal and branched alcohols in benzene and
n-hexane. The Journal of Chemical Thermodynamics 1(3): 273-291.
Cheng, J.J. & Timilsina, G.R. 2011. Status and barriers
of advanced biofuel technologies: A review. Renewable Energy 36(12):
3541-3549.
Davies, J.T. & Rideal, E.K. 1961. Interfacial
Phenomena. New York: Academic Press.
Dilling, W.L. 1977. Interphase transfer processes. II.
Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and
propylenes from dilute aqueous solutions. Comparisons with
theoretical predictions. Environmental Science & Technology 11(4):
405-409.
Dilling, W.L., Tefertiller, N.B. & Kallos, G. 1975.
Evaporation rates and reactivities of methylene chloride, chloroform,
1,1,1-trichloroethane, trychloroethylene, tetrachloroethylene, and other
chlorinated compounds in dilute aqueous solutions. Environmental Science
& Technology 9: 833-838.
Dimitrios, G., Georgake, A. &
Karaiskakis, G. 2012. Kinetic study of
oxygen adsorption over nanosized Au/γ-Al2O3 supported catalysts under
selective CO oxidation conditions. Molecules 17: 4878-4895.
Fuller, E.N., Schettler, P.D. &
Giddings, J.C. 1966. A
new method for prediction of binary gas-phase diffusion coefficients. Industrial
& Engineering Chemistry 58: 18-27.
Gavril, D. 2010. Surface studies by reversed-flow inverse
gas chromatography: A review. Catalysis Today 154(1-2): 149- 159.
Gavril, D., Atta, K.R. &
Karaiskakis, G. 2006. Study
of the evaporation of pollutant liquids under the influence of surfactants. AIChE 52(7): 2381-2390.
Gavril, D. & Karaiskakis, G. 1997. New gas
chromatographic instrumentation for studying mass transfer phenomena. Instrumentation
Science & Technology 25(3): 217-234.
Goodman, W. Tipler, A. 2009. Nitrogen and hydrogen as
alternate carrier gas for GC/MS. International
Gases & Instrumentation. Sept/Oct Issue.
Grushka, E. & Maynard, V.R. 1972. Measurements
of gaseous diffusion coefficients by gas chromatography. Journal of
Chemical Education 49(8): 565.
Hofmann, H.E. 1932. Evaporation rates of organic liquids. Industrial
and Engineering Chemistry 24(2): 135-140.
Hu, N., Wu, D., Cross, K., Burikov, S., Dolenko, T.,
Patsaeva, S. & Schaefer, D.W. 2010. Structurability: A collective measure
of the structural differences in vodkas. Journal of Agricultural and Food
Chemistry 58(12): 7394-7401.
Jozsef, G. 2009. Physical model for vaporization. Fluid Phase Equilibria 283: 89-92.
Karaiskakis, G., Agathonos, P., Niotis,
A. & Katsanos, N.A. 1986. Measurement of mass transfer coefficients for the evaporation of
liquids by reversed-flow gas chromatography. Journal of
Chromatography A 364: 79-85.
Karaiskakis, G. & Gavril, D. 2004. Determination
of diffusion coefficients by gas chromatography. Journal of
Chromatography A 1037: 147-189.
Karaiskakis, G. & Katsanos, N.A. 1984. Rate coefficients for evaporation of pure liqulds and diffusion
coefficients of vapors. J. Phys. Chem. 88: 3674-3678.
Karaiskakis, G., Katsanos, N.A.,
Georgiadou, I. & Lycourghiotis, A. 1982. Catalytic dehydration of alcohols studied by reversed-flow
gas chromatography. Journal of Chemical Society, Faraday Transaction 1 78:
2017-2022.
Karaiskakis, G., Lycourghiotis, A.
& Katsanos, N.A. 1982. Kinetic study of the drying step of supported catalysts by
reversed-flow gas chromatography. Chromatographia 15(6): 351-354.
Katsanos, N.A. 1988. Flow Perturbation Gas Chromatography.
New York: Marcel Dekker Inc.
Katsanos, N.A., Agathonos, P. & Niotis, A. 1988. Mass
transfer phenomena studied by reversed-flow gas chromatography. 2. Mass
transfer and partition coefficients across gas-solid boundaries. The Journal
of Physical Chemistry 92: 1645- 1650.
Katsanos, N.A., Karaiskakis, G. & Agathonos, P. 1985. Measurement of activity coefficients by reversed-flow gas
chromatography. Journal of Chromatography A 349(2): 369-376.
Khalid, K., Khan, R.A. & Mohd. Zain, S. 2012. Determination of diffusion coefficient and activation energy of
selected organic liquids using reversed-flow gas chromatographic technique. Sains Malaysiana 41(9): 1109-1116.
Khalid, K., Khan, R.A. & Mohd. Zain, S. 2011.
Determination of diffusion coefficients of selected long chain hydrocarbons
using reversed-flow gas chromatographic technique. E-Journal of Chemistry 8(4):
1916-1924.
Lainioti, G.C., Kapolos, J., Koliadima, A. &
Karaiskakis, G. 2010. New separation methodologies for the
distinction of the growth phases of Saccharomyces cerevisiae cell cycle. Journal of Chromatography A 1217(11): 1813-1820.
Mackay, D. & Leinonen, P.J. 1975. Rate
of evaporation of low solubility contaminants from water bodies to atmosphere. Environmental Science & Technology 9(13): 1178-1180.
Mackay, D. & Wolkolf, W.A. 1973. The
rate of evaporation of environmental contaminants from water bodies to the
atmosphere. Environmental Science & Technology 7: 611- 614.
Metaxa, E., Kolliopoulos, A., Agelakopoulou, T. &
Roubani- Kalantzopoulou, F. 2009. The role of surface
heterogeneity and lateral interactions in the adsorption of volatile organic
compounds on rutile surface. Applied Surface Science 255(13-14):
6468-6478.
Mohammad, H.H., Mohd. Zain, S., Atta
Rashid, K. & Khalid, K. 2013. Study the effect of imposing
surfactants toward the evaporation of low molecular weight alcohol. International
Journal of Environmental Science and Development 4(4): 403-407.
O’Hare, K.D.,
Spedding, P.L. & Grimshaw, J. 1993. Evaporation of the
ethanol and water components comprising a binary liquid mixture. Developments
in Chemical Engineering and Mineral Processing 1(2-3): 118-128.
O’Hare, K.D. & Spedding, P.L. 1992. Evaporation
of a binary liquid mixture. The Chemical Engineering Journal 48(1):
1-9.
Peter, A. & De. P.J. 2006. Atkins’
Physical Chemistry. 8th ed. New York:
Oxford University Press.
Phillips, C.S.G., Hart-Davis, A.J.,
Saul, R.G.L. & Wormald, J. 1967. The direct study of heterogeneous catalysis by gas-solid
chromatography. Journal of Chromatographic Science 5(8): 424-428.
Rowan, S.M., Newton, M.I. & McHale,
G. 1995. Evaporation of
microdroplets and the wetting of solid surfaces. Journal of Physical
Chemistry 99: 13268-13271.
Rusdi, M. & Moroi, Y. 2004. Study on water evaporation
through 1-alkanol monolayers by the thermogravimetry method. Journal of
Colloid and Interface Science 272: 472-479.
States, R.J. & Gardner, C.S. 2000. Thermal
structure of the mesopause region (80-105 km) at 40°N latitude. Part II:
Diurnal variations. Journal of the Atmospheric Sciences 57(1): 78-92.
*Corresponding
author; email: enal_fifi@yahoo.com
|