Sains Malaysiana 43(12)(2014): 1927–1936

 

Bio-Hydrogen Production from Food Waste through Anaerobic Fermentation

(Pengeluaran Bio Hidrogen daripada Sisa Makanan melalui Fermentasi Anaerobik)

 

 

OSUAGWU CHIEMERIWO GODDAY* & AGAMUTHU PARIATAMBY

Solid Waste Laboratory, A307 Block A Level 3, Institute of Post Graduate Studies

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 6 June 2013/Accepted: 16 April 2014

 

ABSTRACT

In order to protect our planet and ourselves from the adverse effects of excessive CO2 emissions and to prevent an imminent non-renewable fossil fuel shortage and energy crisis, there is a need to transform our current ‘fossil fuel dependent’ energy systems to new, clean, renewable energy sources. The world has recognized hydrogen as an energy carrier that complies with all the environmental quality and energy security, demands. This research aimed at producing hydrogen through anaerobic fermentation, using food waste as the substrate. Four food waste substrates were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was performed in lab scale reactors, using 250 mL serum bottles. The food waste was first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days (acclimatization). The anaerobic sewage sludge was then heat treated at 80°C for 15 min. The experiment was conducted at an initial pH of 5.5 and temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice =26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed = 108.90±1.42 mL). A comparative study of acclimatized (the different food waste substrates were mixed with anaerobic sewage sludge and incubated at 37°C for 31days) and non-acclimatized food waste substrate (food waste that was not incubated with anaerobic sewage sludge) showed that acclimatized food waste substrate enhanced bio-hydrogen production by 90-100%.

 

Keywords: Acclimatization; anaerobic sewage sludge; bio-hydrogen; food waste; initial pH

 

ABSTRAK

Dalam usaha untuk melindungi planet dan diri kita daripada kesan pelepasan CO2 yang berlebihan dan untuk mengelakkan krisis kekurangan bahan api fosil dan tenaga tidak boleh diperbaharui, terdapat keperluan untuk mengubah sistem semasa ‘kebergantungan kepada tenaga bahan api fosil’ kepada sumber tenaga baharu, bersih dan boleh diperbaharui. Dunia telah mengiktiraf hidrogen sebagai tenaga pembawa yang mematuhi permintaan terhadap kualiti alam sekitar dan keselamatan tenaga. Kajian ini bertujuan untuk menghasilkan hidrogen melalui fermentasi anaerobik dan menggunakan sisa makanan sebagai substrat. Empat substrat sisa makanan telah digunakan: Nasi, ikan, sayur-sayuran serta campuran. Pengeluaran bio hidrogen telah dijalankan pada skala reaktor makmal, menggunakan botol serum 250 mL. Pertama, sisa makanan tersebut dicampur dengan enap cemar kumbahan anaerobik dan dieram pada 37°C selama 31 hari (pengikliman). Enap cemar kumbahan anaerobik kemudiannya dirawat pada suhu 80°C selama 15 min. Kajian pemula telah dijalankan pada pH5.5 dan suhu 27, 35 dan 55°C. Hidrogen terkumpul maksimum yang dihasilkan oleh beras, ikan, sayur-sayuran dan substrat sisa makanan campuran adalah tertinggi pada 37°C (beras = mL 26.97±0.76, ikan = mL 89.70±1.25, sayur-sayuran = mL 42.00±1.76 serta campuran = 108.90±1.42 mL). Suatu kajian perbandingan pengikliman (substrat sisa makanan berbeza telah dicampur dengan enap cemar kumbahan anaerobik dan dieram pada 37°C selama 31 hari) dan substrat sisa makanan tanpa pengikliman (sisa makanan yang tidak dieram dengan enap cemar kumbahan anaerobik) menunjukkan bahawa pengikliman substrat sisa makanan meningkatkan pengeluaran bio hidrogen sebanyak 90-100%.

 

Kata kunci: Bio hidrogen; enapcemar anaerobik kumbahan; pengikliman; pH awal; sisa makanan

REFERENCES

 

Ahn, Y., Park, E.J., Oh, Y.K., Park, S., Webster, G. & Weightman, A.J. 2005. Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol. Lett. 249(1): 31-38.

Chen, W.H., Chen, S.Y., Khanal, S.K. & Sung, S. 2006. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy 31(15): 2170-2178.

Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. & Yu, Z. 2009. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy 34(2): 812-820.

Eu, E.C. 2003. Waste Generated and Treated in Europe. http:// europa.eu.int.

Fang, H.H.P., Li, C. & Zhang, T. 2006. Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy 31(6): 683-692.

Fauziah, S.H. & Agamuthu, P. 2008. Challenges and issues in moving towards sustainable landfilling in a transitory country - Malaysia. Waste Manag. Res. 29(1): 13-19.

Hao, Q., Wang, C., Lu, D., Wang, Y., Li, D. & Lu, G. 2010. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature. International Journal of Hydrogen Energy 35(17): 8884-8890.

Iwan Budhiarta, Chamhuri Siwar & Hassan Basri 2012. Current status of municipal solid waste generation in Malaysia.

International Journal on Advanced Science Engineering Information Technology 2(2): 16-21.

Iyagba, E.T., Mangibo. I.A. & Mohammad, Y.S. 2009. The study of cow dung as co-substrate with rice husk in biogas production. Scientific Research and Essay 4(9): 861-866.

Jayalakshmi, S., Joseph, K. & Sukumaran, V. 2009. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. International Journal of Hydrogen Energy 34(21): 8854-8858.

Karlsson, A., Vallin, L. & Ejlertsson, J. 2008. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. International Journal of Hydrogen Energy 33(3): 953-962.

Kim, S.H., Han, S.K. & Shin, H.S. 2006. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry 41(1): 199-207.

Kim, S.H., Han, S.K. & Shin, H.S. 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 29(15): 1607-1616.

Lee, K.S., Hsu, Y.F., Lo, Y.C., Lin, P.J., Lin, C.Y. & Chang, J.S. 2008. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy 33(5): 1565-1572.

Leon, A.T. 2011. Health-promoting Properties of Fruit and Vegetables. Cranfield University: CAB International.

Li, M., Zhao, Y., Guo, Q., Qian, X. & Niu, D. 2008. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33(12): 2573-2579.

Lin, C.Y., Wu, C.C. & Hung, C.H. 2008. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. International Journal of Hydrogen Energy 33(1): 43-50.

Ma, J., Ke, S. & Chen, Y. 2008. Mesophilic biohydrogen production from food waste. Bioinformatics and Biomedical Engineering Conference IEEE Xplore. pp. 2841-2844.

Manaf, L.A., Samah, M.A. & Zukki N.I. 2009. Municipal solid waste management in Malaysia: Practices and Challenges. Waste Management 29(11): 2902-2906.

Massanet-Nicolau, J., Dinsdale, R. & Guwy, A. 2008. Hydrogen production from sewage sludge using mixed microflora inoculum: Effect of pH and enzymatic pretreatment. Bioresource Technology 99(14): 6325-6331.

Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L. & Noike, T. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology 73(1): 59- 65.

Mtui, G.Y.S. 2009. Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8(8): 1398-1415.

Nazlina, H.M.Y., Nor’Aini, A.R., Hasfalina, C.M., M.Z.M. Yusof. & Hassan, M.A. 2011. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. International Journal of Hydrogen Energy 36(16): 9571- 9580.

Nazlina, H.M.Y., Nor’Aini, A.R. Ismail, F., Yusof, M.Z.M. & Hassan, M.A. 2009. Effect of different temperature, initial pH and substrate composition on biohydrogen production from food waste in batch fermentation. Asian Journal of Biotechnology 1(2): 42-50.

Okamoto, M., Miyahara, T., Mizuno, O. & Noike, T. 2000. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 41(3): 25-32.

Pan, J., Zhang, R., El-Mashad, H.M., Sun, H. & Ying, Y. 2008. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy 33: 6968-6975.

Patil, J.H., MALourdu A.R. & Gavimath, C.C. 2011. Study on effect of pretreatment methods on biomethanation of water hyacinth. International Journal of Advanced Biotechnology and Research 2(1): 143-147.

Ramos, C., Buitrón, G., Moreno-Andrade, I. & Chamy, R. 2012. Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. International Journal of Hydrogen Energy 37(18): 13288- 13295.

Shimizu, S., Fujisawa, A., Mizuno, O., Kameda, T. & Yoshioka, T. 2008. Fermentative hydrogen production from food waste without inocula. 5th International Workshop on Water Dynamics, AIP Conf. Proc. 987: 171.174.

Singh, S., Sudhakaran, A.K., Sarma, P.M., Subudhi, S., Mandal, A.K., Gandham, G. & Lal, B. 2010. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments. International Journal of Hydrogen Energy 35(19): 10645-10652.

Skonieczny, M.T. & Yargeau, V. 2009. Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration. International Journal of Hydrogen Energy 34: 3288-3294.

Ueno, Y., Haruta, S., Ishii, M. & Igarashi, Y. 2001. Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl. Microbiol. Biotechnol. 57(1-2): 65-73.

Vijayaraghavan, K., Ahmad, D. & Soning, C. 2007. Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter. International Journal of Hydrogen Energy 32(18): 4754-4760.

Wang, J. & Wan, W. 2009. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34(2): 799-811.

Wang, Y., Wang, H., Feng, X., Wang, X. & Huang, J. 2010. Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. International Journal of Hydrogen Energy 35(7): 3092-3099.

Xiao, L., Deng, Z., Fung, K.Y. & Ng, K.M. 2013. Biohydrogen generation from anaerobic digestion of food waste. International Journal of Hydrogen Energy 38(32): 13907- 13913.

Yap, S. 2013. Alkalinity For Better Health. The Sun. Malaysia: p. 21.

Zhu, G.F., Li, J.Z. & Liu, C.X. 2011. Fermentative hydrogen production from soybean protein processing wastewater in an anaerobic baffled reactor (ABR) using anaerobic mixed consortia. Applied Biochemistry and Biotechnology 168(1): 91-105.

Zwietering, M.H., Jongenburger, I., Rombouts, F.M. & van’T Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56(6): 1875-1881.

 

 

*Corresponding author; email: chisvictory@yahoo.com

 

 

previous