Sains Malaysiana 43(12)(2014):
1927–1936
Bio-Hydrogen
Production from Food Waste through Anaerobic Fermentation
(Pengeluaran Bio Hidrogen daripada Sisa Makanan melalui Fermentasi
Anaerobik)
OSUAGWU CHIEMERIWO GODDAY*
& AGAMUTHU PARIATAMBY
Solid Waste Laboratory, A307 Block A Level 3, Institute of
Post Graduate Studies
University of Malaya, 50603 Kuala Lumpur, Malaysia
Received: 6 June 2013/Accepted: 16 April 2014
ABSTRACT
In order to protect our planet and ourselves from the adverse
effects of excessive CO2 emissions and to prevent an imminent
non-renewable fossil fuel shortage and energy crisis, there is a need to
transform our current ‘fossil fuel dependent’ energy systems to new, clean,
renewable energy sources. The world has recognized hydrogen as an energy
carrier that complies with all the environmental quality and energy security,
demands. This research aimed at producing hydrogen through anaerobic
fermentation, using food waste as the substrate. Four food waste substrates
were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was
performed in lab scale reactors, using 250 mL serum bottles. The food waste was
first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days
(acclimatization). The anaerobic sewage sludge was then heat treated at 80°C
for 15 min. The experiment was conducted at an initial pH of 5.5 and
temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by
rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice
=26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed =
108.90±1.42 mL). A comparative study of acclimatized (the different food waste
substrates were mixed with anaerobic sewage sludge and incubated at 37°C for
31days) and non-acclimatized food waste substrate (food waste that was not
incubated with anaerobic sewage sludge) showed that acclimatized food waste
substrate enhanced bio-hydrogen production by 90-100%.
Keywords: Acclimatization; anaerobic sewage sludge; bio-hydrogen;
food waste; initial pH
ABSTRAK
Dalam usaha untuk melindungi planet dan diri kita daripada kesan
pelepasan CO2 yang berlebihan dan untuk mengelakkan krisis
kekurangan bahan api fosil dan tenaga tidak boleh diperbaharui, terdapat
keperluan untuk mengubah sistem semasa ‘kebergantungan kepada tenaga bahan api
fosil’ kepada sumber tenaga baharu, bersih dan boleh diperbaharui. Dunia telah mengiktiraf hidrogen sebagai tenaga pembawa yang
mematuhi permintaan terhadap kualiti alam sekitar dan keselamatan tenaga. Kajian ini bertujuan untuk menghasilkan hidrogen melalui
fermentasi anaerobik dan menggunakan sisa makanan sebagai substrat. Empat substrat sisa makanan telah digunakan: Nasi, ikan, sayur-sayuran serta
campuran. Pengeluaran bio hidrogen telah dijalankan pada
skala reaktor makmal, menggunakan botol serum 250 mL. Pertama,
sisa makanan tersebut dicampur dengan enap cemar kumbahan anaerobik dan dieram
pada 37°C selama 31 hari (pengikliman). Enap cemar kumbahan anaerobik
kemudiannya dirawat pada suhu 80°C selama 15 min. Kajian pemula telah
dijalankan pada pH5.5 dan suhu 27, 35 dan 55°C. Hidrogen terkumpul maksimum
yang dihasilkan oleh beras, ikan, sayur-sayuran dan substrat sisa makanan
campuran adalah tertinggi pada 37°C (beras = mL 26.97±0.76, ikan = mL
89.70±1.25, sayur-sayuran = mL 42.00±1.76 serta campuran = 108.90±1.42 mL).
Suatu kajian perbandingan pengikliman (substrat sisa makanan berbeza telah
dicampur dengan enap cemar kumbahan anaerobik dan dieram pada 37°C selama 31 hari) dan
substrat sisa makanan tanpa pengikliman (sisa makanan yang tidak dieram dengan
enap cemar kumbahan anaerobik) menunjukkan bahawa pengikliman substrat sisa
makanan meningkatkan pengeluaran bio hidrogen sebanyak 90-100%.
Kata kunci: Bio hidrogen; enapcemar anaerobik
kumbahan; pengikliman; pH awal; sisa makanan
REFERENCES
Ahn, Y., Park, E.J., Oh, Y.K., Park, S.,
Webster, G. & Weightman, A.J. 2005. Biofilm microbial community of a
thermophilic trickling biofilter used for continuous biohydrogen production. FEMS
Microbiol. Lett. 249(1): 31-38.
Chen, W.H., Chen, S.Y., Khanal, S.K. & Sung,
S. 2006. Kinetic study of biological hydrogen production by
anaerobic fermentation. International
Journal of Hydrogen Energy 31(15): 2170-2178.
Dong, L., Zhenhong, Y.,
Yongming, S., Xiaoying, K. & Yu, Z. 2009. Hydrogen production characteristics of the
organic fraction of municipal solid wastes by anaerobic mixed culture
fermentation. International Journal of
Hydrogen Energy 34(2): 812-820.
Eu, E.C. 2003. Waste Generated and Treated in Europe. http:// europa.eu.int.
Fang, H.H.P., Li, C. &
Zhang, T. 2006. Acidophilic
biohydrogen production from rice slurry. International Journal of
Hydrogen Energy 31(6): 683-692.
Fauziah, S.H. & Agamuthu, P. 2008.
Challenges and issues in moving towards sustainable landfilling in a transitory
country - Malaysia. Waste Manag. Res. 29(1): 13-19.
Hao, Q.,
Wang, C., Lu, D., Wang, Y., Li, D. & Lu, G. 2010. Production of hydrogen-rich
gas from plant biomass by catalytic pyrolysis at low temperature. International Journal of Hydrogen Energy 35(17): 8884-8890.
Iwan Budhiarta, Chamhuri Siwar & Hassan
Basri 2012. Current status of municipal solid waste
generation in Malaysia.
International Journal on
Advanced Science Engineering Information Technology 2(2): 16-21.
Iyagba, E.T., Mangibo. I.A. & Mohammad, Y.S.
2009. The study of cow dung as co-substrate with rice husk in
biogas production. Scientific Research and Essay 4(9): 861-866.
Jayalakshmi, S., Joseph, K.
& Sukumaran, V. 2009. Bio hydrogen generation from kitchen waste in
an inclined plug flow reactor. International Journal of Hydrogen
Energy 34(21): 8854-8858.
Karlsson, A., Vallin, L.
& Ejlertsson, J. 2008. Effects of temperature, hydraulic retention time and hydrogen
extraction rate on hydrogen production from the fermentation of food industry
residues and manure. International
Journal of Hydrogen Energy 33(3): 953-962.
Kim, S.H., Han, S.K. &
Shin, H.S. 2006. Effect
of substrate concentration on hydrogen production and 16S rDNA-based analysis
of the microbial community in a continuous fermenter. Process Biochemistry 41(1): 199-207.
Kim, S.H., Han, S.K. &
Shin, H.S. 2004. Feasibility
of biohydrogen production by anaerobic co-digestion of food waste and sewage
sludge. International Journal of Hydrogen Energy 29(15): 1607-1616.
Lee, K.S., Hsu, Y.F., Lo,
Y.C., Lin, P.J., Lin, C.Y. & Chang, J.S. 2008. Exploring optimal environmental factors for
fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy 33(5): 1565-1572.
Leon, A.T. 2011. Health-promoting Properties
of Fruit and Vegetables. Cranfield University: CAB International.
Li, M., Zhao, Y., Guo, Q.,
Qian, X. & Niu, D. 2008. Bio-hydrogen production from food waste and sewage sludge in the
presence of aged refuse excavated from refuse landfill. Renew Energy 33(12):
2573-2579.
Lin, C.Y., Wu, C.C. &
Hung, C.H. 2008. Temperature effects on
fermentative hydrogen production from xylose using mixed anaerobic cultures. International
Journal of Hydrogen Energy 33(1): 43-50.
Ma, J., Ke, S. & Chen,
Y. 2008. Mesophilic
biohydrogen production from food waste. Bioinformatics and Biomedical
Engineering Conference IEEE Xplore. pp. 2841-2844.
Manaf, L.A., Samah, M.A. & Zukki N.I. 2009.
Municipal solid waste management in Malaysia: Practices and Challenges. Waste
Management 29(11): 2902-2906.
Massanet-Nicolau, J.,
Dinsdale, R. & Guwy, A. 2008. Hydrogen production from sewage sludge using mixed microflora
inoculum: Effect of pH and enzymatic pretreatment. Bioresource Technology 99(14):
6325-6331.
Mizuno, O., Dinsdale, R.,
Hawkes, F.R., Hawkes, D.L. & Noike, T. 2000. Enhancement of hydrogen production from glucose
by nitrogen gas sparging. Bioresource Technology 73(1): 59- 65.
Mtui, G.Y.S. 2009. Recent advances in pretreatment
of lignocellulosic wastes and production of value added products. Afr. J.
Biotechnol. 8(8): 1398-1415.
Nazlina, H.M.Y., Nor’Aini, A.R., Hasfalina,
C.M., M.Z.M. Yusof. & Hassan, M.A. 2011. Microbial characterization of
hydrogen-producing bacteria in fermented food waste at different pH values.
International Journal of Hydrogen Energy 36(16): 9571- 9580.
Nazlina, H.M.Y., Nor’Aini, A.R. Ismail, F.,
Yusof, M.Z.M. & Hassan, M.A. 2009. Effect of different temperature, initial pH and substrate composition
on biohydrogen production from food waste in batch fermentation. Asian
Journal of Biotechnology 1(2): 42-50.
Okamoto, M., Miyahara, T., Mizuno, O. & Noike, T. 2000. Biological hydrogen
potential of materials characteristic of the organic fraction of municipal
solid wastes. Water Sci. Technol. 41(3): 25-32.
Pan, J., Zhang, R., El-Mashad, H.M.,
Sun, H. & Ying, Y. 2008. Effect of food to microorganism ratio on biohydrogen production
from food waste via anaerobic fermentation. International Journal of
Hydrogen Energy 33: 6968-6975.
Patil, J.H., MALourdu A.R. &
Gavimath, C.C. 2011. Study on effect of
pretreatment methods on biomethanation of water hyacinth. International
Journal of Advanced Biotechnology and Research 2(1): 143-147.
Ramos, C., Buitrón, G., Moreno-Andrade,
I. & Chamy, R. 2012. Effect
of the initial total solids concentration and initial pH on the bio-hydrogen
production from cafeteria food waste. International Journal of Hydrogen Energy 37(18): 13288- 13295.
Shimizu, S., Fujisawa, A., Mizuno, O.,
Kameda, T. & Yoshioka, T. 2008. Fermentative hydrogen production from food waste without inocula. 5th International Workshop on Water Dynamics, AIP Conf. Proc. 987:
171.174.
Singh, S., Sudhakaran, A.K., Sarma, P.M., Subudhi, S.,
Mandal, A.K., Gandham, G. & Lal, B. 2010. Dark fermentative biohydrogen
production by mesophilic bacterial consortia isolated from riverbed sediments. International Journal of Hydrogen Energy 35(19): 10645-10652.
Skonieczny, M.T. & Yargeau, V. 2009. Biohydrogen
production from wastewater by Clostridium beijerinckii: Effect of pH and
substrate concentration. International
Journal of Hydrogen Energy 34: 3288-3294.
Ueno, Y., Haruta, S., Ishii, M. & Igarashi, Y. 2001. Changes
in product formation and bacterial community by dilution rate on carbohydrate
fermentation by methanogenic microflora in continuous flow stirred tank
reactor. Appl. Microbiol. Biotechnol. 57(1-2): 65-73.
Vijayaraghavan, K., Ahmad, D. & Soning, C. 2007.
Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact
filter. International Journal of Hydrogen
Energy 32(18): 4754-4760.
Wang, J. & Wan, W. 2009. Factors influencing
fermentative hydrogen production: A review. International Journal of
Hydrogen Energy 34(2): 799-811.
Wang, Y., Wang, H., Feng, X., Wang, X. & Huang, J. 2010.
Biohydrogen production from cornstalk wastes by anaerobic fermentation with
activated sludge. International Journal of Hydrogen Energy 35(7):
3092-3099.
Xiao, L., Deng, Z., Fung, K.Y. & Ng, K.M. 2013. Biohydrogen generation from anaerobic digestion of food waste. International Journal of Hydrogen Energy 38(32): 13907- 13913.
Yap, S. 2013. Alkalinity For Better
Health. The Sun. Malaysia: p. 21.
Zhu, G.F., Li, J.Z. & Liu, C.X. 2011. Fermentative
hydrogen production from soybean protein processing wastewater in an anaerobic
baffled reactor (ABR) using anaerobic mixed consortia. Applied Biochemistry
and Biotechnology 168(1): 91-105.
Zwietering, M.H., Jongenburger, I.,
Rombouts, F.M. & van’T Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental
Microbiology 56(6): 1875-1881.
*Corresponding
author; email: chisvictory@yahoo.com
|