Sains Malaysiana 43(2)(2014): 247–252
Design
and Optimization of Coupled Microring Resonators (MRRs)
in Silicon-on-Insulator
(Reka Bentuk dan Pengoptimuman Penyalun Mikrogegelang Terganding
di dalam Silikon-di atas-Penebat)
BUDI MULYANTI1, P. SUSTHITHA
MENON2*, SAHBUDIN
SHAARI2, T.
HARIYADI1, L.
HASANAH3, HAZURA
HAROON2, ABANG
ANNUAR
EHSAN2, D.
MAHMUDIN4, G.
WIRANTO4& B.Y. MAJLIS2
1Department
of Electrical Engineering Education
Indonesia
University of Education (UPI), Jalan Dr. Setiabudhi 207, Bandung 40154
Indonesia
2Abang
Annuar Ehsan & B.Y. Majlis
Institute
of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia
(UKM) 43600 UKM Bangi, Selangor, Malaysia
3Department
of Physics Education
Faculty
of Mathematics and Natural Sciences Education, Indonesia University of
Education (UPI)
Jalan
Dr. Setiabudhi 207, Bandung 40154, Indonesia
4Research
Centre for Electronics and Telecommunication, Indonesian Institute
of Sciences (LIPI)
Jl.
Sangkuriang Bandung 40135, Indonesia
Received:
5 February 2013/Accepted: 30 July 2013
ABSTRACT
The design of microring resonators (MRRs)
for serial configuration, integrated in the lateral scheme was presented and
simulated using 3D electromagnetic simulator based on finite integration technique.
The device model is embedded on the high index contrast (HIC)
structure of silicon-on-insulator with monomodal cavity for TE-mode
polarizations. From the proposed model, we varied the MRRs
order, waveguides separation distance and ring radius, in order to evaluate the
influence of those parameters on the device performance in terms of loss, free
spectral range (FSR) and quality factor (Q-factor).
Upon varying the gap distances, it was found that the highest Q-factor value of
the proposed design was 1275 obtained at gap separation of 150 nm for ring
radius of 6 μm, while the largest FSR was 24 nm. The trade-offs
between device compactness, optical bandwidth and Q- factor are also presented.
Keywords: 3D electromagnetic simulator; microring resonators;
silicon-on-insulator
ABSTRAK
Kami melaporkan reka bentuk penyalun mikrogegelang (MRR)
bagi konfigurasi sesiri dan diintegrasikan secara susunan sisi menggunakan
simulasi elektromagnetik 3D berpandukan teknik integrasi terhingga. Model
peranti terbenam di atas struktur silicon di atas penebat dengan perbezaan
indeks yang tinggi (HIC) dan polarisasi mod TE tunggal.
Daripada model yang dicadangkan, kami mevariasikan tertib MRR,
jarak pemisahan pandu gelombang dan jejari gegelang bagi mengkaji kesan parameter
tersebut terhadap prestasi peranti khususnya kehilangan, julat spektrum bebas (FSR)
dan faktor kualiti (faktor-Q). Dengan mengubah jarak jurang, didapati nilai
faktor-Q tertinggi adalah 1275 pada jarak pemisahan 150 nm dan jejari 6
μm, manakala FSR tertinggi adalah 24 nm.
Timbal–balik antara saiz peranti, lebar jalur optik dan faktor-Q juga
dinyatakan.
Kata kunci: Penyalun mikrogegelang; silikon-di
atas-penebat; simulasi elektromagnetik 3D
REFERENCES
Belarouci,
A., Hill, K.B., Liu, Y., Xiong, Y., Chang, T. & Craig, A.E. 2001. Design
and modeling of waveguide-coupled microring resonator. J. Lumin. 94: 35.
Chao,
C.Y. & Guo, L.J. 2006. Design and optimization of microring resonators in
biochemical sensing applications. IEEE J.of Lightwave Technol. 24: 1395.
Chao,
C.Y., Fung, W. & Guo, L.J. 2010. Polymer microring resonators for
biochemical sensing applications. Optics Express 18: 393.
Hazura,
H., Hanim, A.R., Mardiana, B. & Menon, P.S. 2010. An analysis of silicon
waveguide phase modulation efficiency based on carrier depletion effect. International
Conference on Semiconductor Electronics Proceedings (ICSE2010), Melaka.
Hazura,
H., Mardiana, B., Hanim, A.R., Shaari, S., Menon, P.S., Arsad, N., Mukhtar,
W.M. & Abdullah, H. 2012. Design and characterization of multiple coupled
microring based wavelength demultiplexer in silicon–on–insulator
(SOI). Journal of Nonlinear Optical Physics and Materials 21(1):
1250004(1)-125004(8).
Hryniewicz,
J.V., Absil, P.P., Little, B.E., Wilson, R.A. & Ho, P.T. 2000. Higher order
filter response in coupled microring resonators. IEEE Photonics Technol.
Lett. 12: 320.
Niehusmann,
J., Vorckel, A., Haring, B.P., Wahlbrink, T., Henschel, W. & Kurz, H. 2004.
Ultra-high quality factor silicon-on-insulator microring resonator. Opt.
Lett. 29: 2861.
Rabiei,
P., Steier, W.H., Cheng, Z. & Dalton, L.R. 2002. Polymer micro-ring filters
and modulators. J. Lightwave Technol. 20: 1968.
Shaari,
S., Hanim, A.R., Mardiana, B., Hazura, H. & Menon, P.S. 2010. Modeling and
analysis of lateral doping region translation variation on optical modulator
performance. AIP Conference Proceedings 1325: 297-300.
Wang,
T-Z. & Chu, C-H. 2007. Wavelength-tunable microring resonator on lithium
niobate. IEEE Phot. Tech. Letters 19: 1904.
Yariv,
A. 2000. Universal relations for coupling of optical power between
microresonators and dielectric waveguides. Electronic Letters 36(4):
321-322.
*Corresponding
author; email: susi@eng.ukm.my
|