Sains Malaysiana 43(2)(2014): 253–259
Effect
of Monoethanolamine Loading on the Physicochemical Properties
of
Amine-Functionalized Si-MCM-41
(Kesan Penambahan Monoetanolamina terhadap Sifat Fiziko Kimia Si-MCM-41
Difungsikan oleh Amina)
ANITA RAMLI*1, SOHAIL
AHMED2& SUZANA YUSUP2
1Department of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS
Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
2Department of Chemical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Received: 5 February 2013/Accepted: 26 July 2013
ABSTRACT
Siliceous mesoporous molecular sieve (Si-MCM-41)
material with highly ordered hexagonal pore arrangement was synthesized at 373
K for 8-days duration by hydrothermal method, dried at 393 K and calcined at
823 K in N2 atmosphere. The calcined Si-MCM-41
was later functionalized with 10-50 wt. % monoethanolamine (MEA)
by impregnation method and dried in vacuum at 343 K. The MEA-Si-MCM-41
samples were characterized for their physicochemical properties with FTIR, XRD, TGA, HRTEM, FESEM, BET and elemental analysis. XRD results showed that the
intensity of the characteristic peaks of Si-MCM-41
reduces with increasing loading of MEA indicating that the MEA molecules
are loaded in the pores as well as on the surface of Si-MCM-41.
The appearance of FTIR peaks corresponding to N-H, C-N
and C-H bonds suggested that Si-MCM-41 has been functionalized
with MEA. The presence of Si-O-Si peaks in FTIR spectra
of MEA-Si-MCM-41 samples indicates that
the hexagonal pore arrangement remains intact and this is supported by HRTEM images. FESEM images show that MEA-Si-MCM-41
samples became agglomerated with increase loading of MEA. TGA analyses
show that the MEA-Si-MCM-41 samples are thermally
stable up to 528 K. N2 adsorption-desorption isotherms show
that the textural properties of Si-MCM-41 material slowly change
from a mesoporous material to non-porous material as the MEA loading
increases due to pore filling effect during functionalization with MEA.
Detection of N, C and H by elemental analysis confirms the presence of MEA in MEA-Si-MCM-41
samples.
Keywords: Functionalization; MEA;
physicochemical properties; Si-MCM-41
ABSTRAK
Bahan penapis molekul berliang meso berasaskan silika (Si-MCM-41)
dengan struktur liang secara heksagon yang sangat tersusun telah disintesis
pada suhu 373 K selama 8 hari menggunakan kaedah hidroterma, dikeringkan pada
393 K dan dikalsinkan pada 823 K dalam aliran N2.
Si-MCM-41 yang telah dikalsinkan kemudiannya difungsikan
dengan memuatkan 10-50 wt. % monoethanolamine (MEA)
ke dalam liangnya menggunakan kaedah pengisitepuan dan dikeringkan menggunakan
vakum pada suhu 343 K. Sifat fiziko kimia sampel MEA-Si-MCM-41
telah dianalisis dengan menggunakan FTIR, XRD, TGA, TEM, FESEM, BET dan analisis unsur. Keputusan XRD menunjukkan
bahawa keamatan puncak Si-MCM-41 berkurangan dengan peningkatan
muatan MEA menunjukkan bahawa molekul MEA telah
dimuatkan ke dalam liang serta pada permukaan Si-MCM-41.
Kehadiran puncak FTIR yang sepadan dengan ikatan N-H,
C-N dan C-H mencadangkan bahawa Si-MCM-41 telah difungsikan oleh MEA.
Kehadiran puncak Si-O-Si pada spektra FTIR bagi sampel MEA-Si-MCM-41
menunjukkan bahawa struktur liang secara heksagon masih utuh dan ini disokong
oleh mikrograf HRTEM. Mikrograf FESEM menunjukkan
bahawa sampel MEA-Si-MCM-41 menjadi bergumpal dengan
peningkatan muatan MEA. Analisis TGA menunjukkan
bahawa sampel MEA-Si-MCM-41 mempunyai kestabilan
terma sehingga suhu 528 K. Isoterma penjerapan-penyahjerapan menunjukkan bahawa
sifat tekstur bahan Si-MCM-41 berubah secara perlahan
daripada bahan berliang meso kepada bahan tidak berliang setelah muatan MEA meningkat
disebabkan kesan pengisian liang semasa pemfungsian dengan MEA.
Pengesanan N, C dan H melalui analisis unsur mengesahkan kehadiran MEA di
dalam sampel MEA-Si-MCM-41.
Kata kunci: MEA;
pemfungsian; sifat fiziko kimia; Si-MCM-41
REFERENCES
Ahmed, S., Ramli, A. & Yusup, S. 2012.
Effect of polyethylenimine loading on the physicochemical properties of
amine-functionalized Si-MCM-41. Malaysian Journal of Microscopy 8:
22-27.
Barrett, E.P., Joyner, L.G. & Halenda, P.P.
1951. The determination of pore volume and area distributions in porous
substances. I. Computations from Nitrogen isotherms. Journal of the American
Chemical Society 73: 373-380.
Beck, J.S., Vartuli, J.C., Kennedy, G.J.,
Kresge, C.T., Roth, W.J. & Schramm, S.E. 1994. Molecular or supramolecular
templating: Defining the role of surfactant chemistry in the formation of
microporous and mesoporous molecular sieves. Chemistry of Materials 6:
1816-1821.
Beck, J.S., Vartuli, J.C., Roth, W.J.,
Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H. &
Sheppard, E.W. 1992. A new family of mesoporous molecular sieves prepared with
liquid crystal templates. Journal of the American Chemical Society 114:
10834-10843.
Belmabkhout, Y., Serna-Guerrero, R. &
Sayari, A. 2009. Adsorption of CO2 from dry gases on MCM-41 silica
at ambient temperature and high pressure. 1: Pure adsorption. Chemical
Engineering Science 64: 3721-3728.
Bhagiyalakshmi, M., Yun, L., Anuradha, R. &
Jang, H. 2010. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48
and SBA-15 from rice husk ash: Their application to CO2 chemisorption. Journal of Porous Materials 17: 475-484.
Blin,
J.L., Otjacques, C., Herrier, G. & Su, B.L. 2001. Kinetic study of MCM-41
synthesis. International Journal of Inorganic Materials 3: 75-86.
Brunauer,
S., Emmett, P.H. & Teller, E. 1938. Adsorption of gases in multimolecular
layers. Journal of the American Chemical Society 60: 309-319.
Cheng,
C.F., Luan, Z. & Klinowski, J. 1995. The role of surfactant micelles in the
synthesis of the mesoporous molecular sieve MCM-41. Langmuir 11:
2815-2819.
Chuah,
G.K., Hu, X., Zhan, P. & Jaenicke, S. 2002. Catalysts from MCM-41:
Framework modification, pore size engineering, and organic-inorganic hybrid
materials. Journal of Molecular Catalysis A: Chemical 181: 25-31.
Corma,
A., Martinez, A., Martinezsoria, V. & Monton, J.B. 1995. Hydrocracking of
vacuum gasoil on the novel mesoporous MCM-41 Aluminosilicate catalyst. Journal
of Catalysis 153: 25-31.
Drage,
T.C., Arenillas, A., Smith, K.M. & Snape, C.E. 2008. Thermal stability of
polyethylenimine based carbon dioxide adsorbents and its influence on selection
of regeneration strategies. Microporous and Mesoporous Materials 116:
504-512.
Feng,
X., Fryxell, G.E., Wang, L.Q., Kim, A.Y., Liu, J. & Kemner, K.M. 1997.
Functionalized monolayers on ordered mesoporous supports. Science 276:
923-926.
Grisdanurak,
N., Chiarakorn, S. & Wittayakun, J. 2003. Utilization of mesoporous
molecular sieves synthesized from natural source rice husk silica to
chlorinated volatile organic compounds (CVOCs) adsorption. Korean Journal of
Chemical Engineering 20: 950-955.
Jiang,
T., Lu, L., Yang, X., Zhao, Q., Tao, T., Yin, H. & Chen, K. 2008. Synthesis
and characterization of mesoporous molecular sieve nanoparticles. Journal of
Porous Materials 15: 67-73.
Kim,
J.M., Kwak, J.H., Jun, S. & Ryoo, R. 1995. Ion exchange and thermal
stability of MCM-41. The Journal of Physical Chemistry 99: 16742-16747.
Kresge,
C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. & Beck, J.S. 1992. Ordered
mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359: 710-712.
Liu,
L., Zhang, G.Y. & Dong, J.X. 2004. Large pore mesoporous MCM-41 templated
from Cetyltriethylammonium Bromide. Chinese Chemical Letters 15:
737-740.
Ma,
X., Wang, X. & Song, C. 2009. Molecular basket sorbents for separation of
CO2 and H2S from various gas streams. Journal of the
American Chemical Society 131: 5777-5783.
Marler,
B., Oberhagemann, U., Vortmann, S. & Gies, H. 1996. Influence of the
sorbate type on the XRD peak intensities of loaded MCM-41. Microporous
Materials 6: 375-383.
Nazari,
K., Shokrollahzadeh, S., Mahmoudi, A., Mesbahi, F., Matin, N.S. &
Moosavi-Movahedi, A.A. 2005. Iron(III) protoporphyrin/MCM41 catalyst as a
peroxidase enzyme model: Preparation and typical test reactions. Journal of
Molecular Catalysis A: Chemical 239: 1-9.
Ramli,
A., Ahmed, S. & Yusup, S. 2012. Effect of synthesis duration on the
physicochemical properties of siliceous mesoporous molecular sieve (Si-MMS). Deffect
and Diffusion Forum 326-328: 647-653.
Rathousky,
J., Zukal, A., Franke, O. & Schulz-Ekloff, G. 1995. Adsorption on MCM-41
mesoporous molecular sieves. Part 2. Cyclopentane isotherms and their
temperature dependence. Journal of the Chemical Society, Faraday
Transactions 91: 937-940.
Romero,
A.A., Alba, M.A.D., Zhou, W. & Klinowski, J. 1997. Synthesis and
characterization of the mesoporous silicate molecular sieve MCM-48. The
Journal of Physical Chemistry B 101: 5294-5300.
Sing,
K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A.,
Rouquerol, J. & Siemieniewska, T. 1985. Reporting physisorption
data for gas/solid systems with special reference to the determination
of surface area and porosity. Pure Appl. Chem. 57: 603-609.
Son,
W.J., Choi, J.S. & Ahn, W.S. 2008. Adsorptive removal of carbon dioxide
using polyethyleneimine-loaded mesoporous silica materials. Microporous and
Mesoporous Materials 113: 31-40.
Xu,
X., Song, C., Andresen, J.M., Miller, B.G. & Scaroni, A.W. 2002. Novel
polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as
high-capacity adsorbent for CO2 capture. Energy & Fuels 16:
1463-1469.
Yue,
M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J. & Zhu, J.H. 2008. Efficient
CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry – A European Journal 14: 3442-3451.
*Corresponding
author; email: anita_ramli@petronas.com.my
|