Sains Malaysiana 43(2)(2014): 253–259

 

Effect of Monoethanolamine Loading on the Physicochemical Properties

of Amine-Functionalized Si-MCM-41

(Kesan Penambahan Monoetanolamina terhadap Sifat Fiziko Kimia Si-MCM-41

Difungsikan oleh Amina)

 

 

ANITA RAMLI*1, SOHAIL AHMED2& SUZANA YUSUP2

 

1Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS

Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

 

2Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

 

Received: 5 February 2013/Accepted: 26 July 2013

 

ABSTRACT

Siliceous mesoporous molecular sieve (Si-MCM-41) material with highly ordered hexagonal pore arrangement was synthesized at 373 K for 8-days duration by hydrothermal method, dried at 393 K and calcined at 823 K in N2 atmosphere. The calcined Si-MCM-41 was later functionalized with 10-50 wt. % monoethanolamine (MEA) by impregnation method and dried in vacuum at 343 K. The MEA-Si-MCM-41 samples were characterized for their physicochemical properties with FTIR, XRD, TGA, HRTEM, FESEM, BET and elemental analysis. XRD results showed that the intensity of the characteristic peaks of Si-MCM-41 reduces with increasing loading of MEA indicating that the MEA molecules are loaded in the pores as well as on the surface of Si-MCM-41. The appearance of FTIR peaks corresponding to N-H, C-N and C-H bonds suggested that Si-MCM-41 has been functionalized with MEA. The presence of Si-O-Si peaks in FTIR spectra of MEA-Si-MCM-41 samples indicates that the hexagonal pore arrangement remains intact and this is supported by HRTEM images. FESEM images show that MEA-Si-MCM-41 samples became agglomerated with increase loading of MEA. TGA analyses show that the MEA-Si-MCM-41 samples are thermally stable up to 528 K. N2 adsorption-desorption isotherms show that the textural properties of Si-MCM-41 material slowly change from a mesoporous material to non-porous material as the MEA loading increases due to pore filling effect during functionalization with MEA. Detection of N, C and H by elemental analysis confirms the presence of MEA in MEA-Si-MCM-41 samples.

 

Keywords: Functionalization; MEA; physicochemical properties; Si-MCM-41

 

ABSTRAK

Bahan penapis molekul berliang meso berasaskan silika (Si-MCM-41) dengan struktur liang secara heksagon yang sangat tersusun telah disintesis pada suhu 373 K selama 8 hari menggunakan kaedah hidroterma, dikeringkan pada 393 K dan dikalsinkan pada 823 K dalam aliran N2. Si-MCM-41 yang telah dikalsinkan kemudiannya difungsikan dengan memuatkan 10-50 wt. % monoethanolamine (MEA) ke dalam liangnya menggunakan kaedah pengisitepuan dan dikeringkan menggunakan vakum pada suhu 343 K. Sifat fiziko kimia sampel MEA-Si-MCM-41 telah dianalisis dengan menggunakan FTIR, XRD, TGA, TEM, FESEM, BET dan analisis unsur. Keputusan XRD menunjukkan bahawa keamatan puncak Si-MCM-41 berkurangan dengan peningkatan muatan MEA menunjukkan bahawa molekul MEA telah dimuatkan ke dalam liang serta pada permukaan Si-MCM-41. Kehadiran puncak FTIR yang sepadan dengan ikatan N-H, C-N dan C-H mencadangkan bahawa Si-MCM-41 telah difungsikan oleh MEA. Kehadiran puncak Si-O-Si pada spektra FTIR bagi sampel MEA-Si-MCM-41 menunjukkan bahawa struktur liang secara heksagon masih utuh dan ini disokong oleh mikrograf HRTEM. Mikrograf FESEM menunjukkan bahawa sampel MEA-Si-MCM-41 menjadi bergumpal dengan peningkatan muatan MEA. Analisis TGA menunjukkan bahawa sampel MEA-Si-MCM-41 mempunyai kestabilan terma sehingga suhu 528 K. Isoterma penjerapan-penyahjerapan menunjukkan bahawa sifat tekstur bahan Si-MCM-41 berubah secara perlahan daripada bahan berliang meso kepada bahan tidak berliang setelah muatan MEA meningkat disebabkan kesan pengisian liang semasa pemfungsian dengan MEA. Pengesanan N, C dan H melalui analisis unsur mengesahkan kehadiran MEA di dalam sampel MEA-Si-MCM-41.

 

Kata kunci: MEA; pemfungsian; sifat fiziko kimia; Si-MCM-41

REFERENCES

 

Ahmed, S., Ramli, A. & Yusup, S. 2012. Effect of polyethylenimine loading on the physicochemical properties of amine-functionalized Si-MCM-41. Malaysian Journal of Microscopy 8: 22-27.

Barrett, E.P., Joyner, L.G. & Halenda, P.P. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms. Journal of the American Chemical Society 73: 373-380.

Beck, J.S., Vartuli, J.C., Kennedy, G.J., Kresge, C.T., Roth, W.J. & Schramm, S.E. 1994. Molecular or supramolecular templating: Defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chemistry of Materials 6: 1816-1821.

Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H. & Sheppard, E.W. 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 114: 10834-10843.

Belmabkhout, Y., Serna-Guerrero, R. & Sayari, A. 2009. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: Pure adsorption. Chemical Engineering Science 64: 3721-3728.

Bhagiyalakshmi, M., Yun, L., Anuradha, R. & Jang, H. 2010. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: Their application to CO2 chemisorption. Journal of Porous Materials 17: 475-484.

Blin, J.L., Otjacques, C., Herrier, G. & Su, B.L. 2001. Kinetic study of MCM-41 synthesis. International Journal of Inorganic Materials 3: 75-86.

Brunauer, S., Emmett, P.H. & Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60: 309-319.

Cheng, C.F., Luan, Z. & Klinowski, J. 1995. The role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-41. Langmuir 11: 2815-2819.

Chuah, G.K., Hu, X., Zhan, P. & Jaenicke, S. 2002. Catalysts from MCM-41: Framework modification, pore size engineering, and organic-inorganic hybrid materials. Journal of Molecular Catalysis A: Chemical 181: 25-31.

Corma, A., Martinez, A., Martinezsoria, V. & Monton, J.B. 1995. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 Aluminosilicate catalyst. Journal of Catalysis 153: 25-31.

Drage, T.C., Arenillas, A., Smith, K.M. & Snape, C.E. 2008. Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous and Mesoporous Materials 116: 504-512.

Feng, X., Fryxell, G.E., Wang, L.Q., Kim, A.Y., Liu, J. & Kemner, K.M. 1997. Functionalized monolayers on ordered mesoporous supports. Science 276: 923-926.

Grisdanurak, N., Chiarakorn, S. & Wittayakun, J. 2003. Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to chlorinated volatile organic compounds (CVOCs) adsorption. Korean Journal of Chemical Engineering 20: 950-955.

Jiang, T., Lu, L., Yang, X., Zhao, Q., Tao, T., Yin, H. & Chen, K. 2008. Synthesis and characterization of mesoporous molecular sieve nanoparticles. Journal of Porous Materials 15: 67-73.

Kim, J.M., Kwak, J.H., Jun, S. & Ryoo, R. 1995. Ion exchange and thermal stability of MCM-41. The Journal of Physical Chemistry 99: 16742-16747.

Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. & Beck, J.S. 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359: 710-712.

Liu, L., Zhang, G.Y. & Dong, J.X. 2004. Large pore mesoporous MCM-41 templated from Cetyltriethylammonium Bromide. Chinese Chemical Letters 15: 737-740.

Ma, X., Wang, X. & Song, C. 2009. Molecular basket sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society 131: 5777-5783.

Marler, B., Oberhagemann, U., Vortmann, S. & Gies, H. 1996. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41. Microporous Materials 6: 375-383.

Nazari, K., Shokrollahzadeh, S., Mahmoudi, A., Mesbahi, F., Matin, N.S. & Moosavi-Movahedi, A.A. 2005. Iron(III) protoporphyrin/MCM41 catalyst as a peroxidase enzyme model: Preparation and typical test reactions. Journal of Molecular Catalysis A: Chemical 239: 1-9.

Ramli, A., Ahmed, S. & Yusup, S. 2012. Effect of synthesis duration on the physicochemical properties of siliceous mesoporous molecular sieve (Si-MMS). Deffect and Diffusion Forum 326-328: 647-653.

Rathousky, J., Zukal, A., Franke, O. & Schulz-Ekloff, G. 1995. Adsorption on MCM-41 mesoporous molecular sieves. Part 2. Cyclopentane isotherms and their temperature dependence. Journal of the Chemical Society, Faraday Transactions 91: 937-940.

Romero, A.A., Alba, M.A.D., Zhou, W. & Klinowski, J. 1997. Synthesis and characterization of the mesoporous silicate molecular sieve MCM-48. The Journal of Physical Chemistry B 101: 5294-5300.

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57: 603-609.

Son, W.J., Choi, J.S. & Ahn, W.S. 2008. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials 113: 31-40.

Xu, X., Song, C., Andresen, J.M., Miller, B.G. & Scaroni, A.W. 2002. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels 16: 1463-1469.

Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J. & Zhu, J.H. 2008. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry – A European Journal 14: 3442-3451.

 

 

*Corresponding author; email: anita_ramli@petronas.com.my

 

 

 

 

previous