Sains Malaysiana 43(3)(2014):
437–441
Synthesis
and Photocatalysis of ZnO/γ-Fe2O3 Nanocomposite
in Degrading Herbicide
2,4-dichlorophenoxyacetic Acid
(Sintesis dan Fotokatalisis ZnO/γ-Fe2O3 dalam Mendegradasi Herbisid Asid 2,4-diklorofenoksiasetik)
LEE KIAN MUN1, ABDUL HALIM ABDULLAH2*, MOHD
ZOBIR
HUSSEIN2
& ZULKARNAIN ZAINAL2
1Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia
43400
Serdang, Selangor, Malaysia
2Advanced
Materials and Nanotechnology Laboratory, Institute of Advanced Technology,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Received:
17 April 2013/Accepted: 12 July 2013
ABSTRACT
ZnO/γ-Fe2O3 catalysts were
fabricated via a simple precipitation route using zinc acetate and iron acetate
as the precursors and ammonia as the precipitant. The resulted nanocatalysts
were subjected to heat treatment at 450°C for 2 h. The characteristics of the nanocomposite were
investigated by various characterization techniques. The synthesized
nanocomposite has an average particle size of 13 nm and a surface area of 17 m2/g.
The photocatalytic activity of ZnO/γ-Fe2O3 nanocomposite was
evaluated by photodegrading 2,4-dichlorophenoxyacetic acid (2,4-D) under UV irradiation. The results showed that ZnO/γ-Fe2O3 nanocomposite exhibited
enhanced photoactivity compared to pure ZnO with almost 20% increment within 4
h of reaction time. The result indicated the applicability of ZnO/γ-Fe2O3 nanocomposite
to be used as photocatalyst in removing organic pollutants in wastewater.
Keywords: Photocatalytic degradation; precipitation; zinc oxide;
2,4-D
ABSTRAK
Mangkin ZnO/γ-Fe2O3 telah disintesis dengan
kaedah pemendakan dengan menggunakan zink asetat dihidrat dan ferum asetat
sebagai bahan pemula dan ammonia sebagai agen pemendak. Nanomangkin yang dihasilkan
dikalsin pada 450°C selama 2 jam. Ciri mangkin yang dihasilkan dikaji dengan pelbagai analisis. ZnO/γ-Fe2O3 yang dihasilkan
mempunyai purata saiz zarah sebesar 13 nm dan luas permukaan sebanyak 17 m2/g.
Aktiviti fotopemangkinan bagi ZnO/γ-Fe2O3 yang disintesis telah
dinilai dengan mendegradasi asid 2,4-diklorofenoksiasetik (2,4-D) di bawah
radiasi cahaya ultraungu. Kajian menunjukkan bahawa peratusan
penyingkiran 2,4-D oleh ZnO/γ-Fe2O3 melebihi ZnO sebanyak
20% dalam masa 4 jam. Ini menunjukkan ZnO/γ-Fe2O3 yang
dihasilkan mampu diaplikasikan sebagai fotomangkin untuk menyingkirkan pencemar
organik dalam air sisa.
Kata kunci: Fotokatalisis
degradasi; pemendakan; zink oksida; 2,4-D
REFERENCES
Akyol, A. & Bayramoğlu, M.
2005. Photocatalytic
degradation of remazol red F3B using ZnO catalyst. Journal of
Hazardous Materials 124(1-3): 241-246.
Baran, W., Adamek, E. & Makowski,
A. 2008. The influence of selected parameters
on the photocatalytic degradation of azo-dyes in the
presence of TiO2 aqueous suspension. Chemical
Engineering Journal 145(2): 242-248.
Daneshvar, N., Salari, D. &
Khataee, A.R. 2004. Photocatalytic
degradation of azo dye Acid Red 14 in water on ZnO as an alternative catalyst
to TiO2. Journal of Photochemistry
and Photobiology A: Chemistry 162(2-3): 317-322.
Dodd, A.C., McKinley, A.J., Saunders,
M. & Tsuzuki, T. 2006. Effect of particle size on the photocatalytic activity of
nanoparticulate zinc oxide. Journal of Nanoparticle Research 8(1):
43-51.
Evgenidou, E., Fytianos, K. &
Poulios, I. 2005. Semiconductor-sensitized
photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Applied Catalysis B:
Environmental 59(1-2): 81-89.
Fu, R., Wang, W., Han, R. & Chen, K. 2008. Preparation and characterization of γ-Fe2O3/ZnO composite particles. Materials
Letters 62(25): 4066-4068.
Gaya, U.I., Abdullah, A.H., Hussein,
M.Z. & Zainal, Z. 2010. Photocatalytic
removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 263(1-3): 176-182.
Jing, L., Xu, Z., Sun, X., Jing, S. & Cai, W. 2001. The surface properties and photocatalytic activities of ZnO
ultrafine particles. Applied Surface Science 180(3-4): 308-314.
Karunakaran, C. & Dhanalakshmi, R. 2008. Photocatalytic performance of particulate semiconductors under
natural sunshine - Oxidation of carboxylic acids. Solar Energy
Materials and Solar Cells 92(5): 588-593.
Khodja, A.A., Sehili, T., Pilichowski, J. & Boule, P.
2001. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous
suspensions. Journal of Photochemistry and Photobiology A: Chemistry 141(2-3):
231-239.
Konstantinou, I.K. & Albanis, T.A. 2004. TiO2-assisted photocatalytic degradation of azo
dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied
Catalysis B: Enviromental 49(1): 1-14.
Li, C., Chen, R., Zhang, X., Shu, S.,
Xiong, J., Zheng, Y. & Dong, W. 2011. Electrospinning
of CeO2-ZnO composite nanofibers and their
photocatalytic property. Materials Letters 65(9): 1327-1330.
Lin, C.F., Wu, C.H. & Onn, Z.N. 2008. Degradation of 4-chlorophenol in TiO2, WO3,
SnO2, TiO2/WO3 and TiO2/ SnO2 systems. Journal of Hazardous Materials 154(1-3): 1033-1039.
Liu, Z., Deng, J. & Li, F. 2008. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new
method. Materials Science and Engineering B 150(2): 99-104.
Lizama, C., Freer, J., Baeza, J. & Mansilla, H.D. 2002. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis Today 76(2-4): 235-246.
Nayak,
J., Sahu, S.N., Kasuya, J. & Nozaki, S. 2008. CdS– ZnO composite
nanorods: Synthesis, characterization and application for photocatalytic
degradation of 3,4-dihydroxy benzoic acid. Applied
Surface Science 254(22): 7215-7218.
Pera-Titus,
M., García-Molina, V., Baños, M.A., Giménez, J. & Esplugas, S. 2004.
Degradation of chlorophenols by means of advanced oxidation processes: A
general review. Applied Catalysis B: Environmental 47(4): 219-256.
Pourata, R., Khataee, A.R., Aber, S. & Daneshvar, N.
2009. Removal of the herbicide Bentazon from contaminated water
in the presence of synthesized nanocrystalline TiO2 powders under irradiation
of UV-C light. Desalination 249(1): 301-307.
Rao,
A.N., Sivasankar, B. & Sadasivam, V. 2009. Kinetic study
on the photocatalytic degradation of salicylic acid using ZnO catalyst. Journal
of Hazardous Materials 166(2-3): 1357-1361.
Saien,
J. & Khezrianjoo, S. 2008. Degradation of the fungicide carbendazim in
aqueous solutions with UV/TiO2 process: Optimization, kinetics and
toxicity studies. Journal of Hazardous Materials 157(2-3): 269-276.
Sobana, N. & Swaminathan, M. 2007. The effect of operational parameters on the photocatalytic
degradation of Acid Red 18 by ZnO. Separation and Purification
Technology 56(1): 101-107.
Uddin,
M.M., Hasnat, M.A., Samed, A.J.F. & Majumdar, R.K. 2007. Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of erythrosine. Dyes
and Pigments 75(1): 207-212.
Vaezi,
M.R. 2008. Two-step solochemical synthesis of ZnO/TiO2 nano-composite materials. Journal of Materials Processing Technology 205(1-3):
332-337.
Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui,
Y. 2007. Comparison of dye degradation efficiency using ZnO powders
with various size scales. Journal of Hazardous Materials 141(3):
645-652.
Wu, P., Du, N., Zhang, H., Jin, L. & Yang, D. 2010. Functionalization of ZnO nanorods with γ-Fe2O3 nanoparticles: Layer-by-layer synthesis, optical and magnetic properties. Materials
Chemistry and Physics 124(2-3): 908-911.
Xie,
J., Li, Y., Zhao, W., Bian, L. & Wei, Y. 2011. Simple
fabrication and photocatalytic activity of ZnO particles with different
morphologies. Powder Technology 207(1-3): 140-144.
*Corresponding
author; email: halim@upm.edu.my
|