Sains Malaysiana 43(4)(2014):
543–550
Population Density and Antibiotic Resistant of Bacteria from
Bivalve
(Perna viridis and Anadara granosa)
(Kepadatan Populasi dan
Kerintangan Antibiotik oleh Bakteria daripada Bivalvia
(Perna viridis dan Anadara
granosa))
ASMAT AHMAD1*, NUR DIANA
MEHAT2, RAHIMI
HAMID1& GIRES
USUP2
1School
of Biosciences and Biotechnology, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2School of Environmental
and Natural Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 19 February
2013/Accepted: 5 August 2013
ABSTRACT
This study was carried out to know the bacteria
population density in the blood cockle (Anadara granosa) and green lipped mussel (Perna viridis), to analyse the bacteria resistance
towards antibiotics and antimicrobial activity of isolates against selected
pathogen. Samples of blood cockle and green lipped mussel were obtained from five areas in Kedah and Negeri Sembilan. Bacterial
population densities in mussels and cockles were 3
× 102 - 8 × 108 CFU/mL and 5 × 102 - 5 × 108 CFU/mL, respectively. A
total of 162 isolates were obtained, of which 131 isolates were from mussels
and 31 isolates were from cockles. Vibrio sp. was the most dominant genus in both
types of samples. Antibiotic testing of all isolates showed most
were resistant to Penicillin (10 U)
and most were sensitive to Ciprofloxacin (5 µg). Most isolates (160/162) showed resistance
to at least two antibiotics and 10 isolates were resistant to more than five
antibiotics. Multiple antibiotic resistance indices (MAR) were calculated based
on the antibiotic resistance results. Most isolates had a MAR index value of 0.2 which indicated the isolates were not contaminated with
antibiotic residues. The highest index value was 0.7. Fifteen out of 39 isolates which produced beta-lactamase enzyme were tested for antimicrobial activity against selected
pathogen. Results indicated that antimicrobial activity were varies among the
isolates. Isolate SMII-Ip produced antimicrobial activity against six out of the nine tested pathogen and none of the isolates active
against Pseudomonas mirabilis.
Keywords: Anadara granosa; antibiotic; antimicrobial; population density; Perna viridis
ABSTRAK
Kajian
ini dijalankan bagi mengetahui kepadatan populasi bakteria daripada kerang (Anadara granosa) serta kupang (Perna viridis), menganalisis kerintangan bakteria
terhadap antibiotik serta aktiviti antimikrob oleh pencilan terhadap patogen
pilihan. Sampel
kerang dan kupang telah diperolehi dari lima kawasan
perairan Kedah dan Negeri Sembilan. Kepadatan populasi bakteria pada kupang
adalah 3 × 102 - 8 × 108 CFU/mL
dan kerang 5 × 102 - 5 × 108 CFU/mL Sebanyak 162
pencilan telah berjaya dipencilkan, dengan 131 pencilan adalah daripada kupang
dan 31 daripada kerang. Vibrio sp. merupakan genus
paling dominan daripada kedua-dua sampel. Ujian kerintangan antibiotik
terhadap semua pencilan menunjukkan kebanyakan isolat rintang terhadap
Penisilin (10 U) dan sensitif terhadap Ciprofloksasin (5 µg). Hampir semua pencilan (160/162)
rintang terhadap sekurangnya-kurangnya dua antibiotik dan 10 pencilan rintang
terhadap lebih daripada lima antibiotik. Kiraan indeks Antibiotik Pelbagai Rintang (MAR) berdasarkan hasil
ujian kerintangan antibiotik telah dijalankan. Kebanyakan isolat
mempunyai nilai indeks MAR 0.2 yang bermakna pencilan
tidak terdedah kepada pencemaran antibiotik. Nilai indeks MAR
tertinggi adalah 0.7. Sebanyak 15 daripada 37 pencilan
yang menghasilkan enzim beta-laktamase telah diuji aktiviti antimikrob terhadap
mikrob pathogen terpilih. Hasil menunjukkan aktiviti
antimikrob yang berbeza bagi pencilan yang berbeza. Pencilan SMII-Ip menghasilkan aktiviti antimikrob
terhadap enam daripada sembilan pathogen yang diuji
dan tidak terdapat pencilan yang aktif merencat Pseudomonas mirabilis.
Kata kunci: Anadara granosa; antibiotik; antimikrob; kepadatan
populasi; Perna viridis
REFERENCES
Bansemir,
A., Blume, M., Schröder, S. & Lindequist, U. 2006. Screening of cultivated
seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252: 79-84.
Bauer,
A.W., Kirby, W.M.M., Sherris, J.C. & Turck, M. 1966. Antibiotic
susceptibility testing by a standardized single disc method. Am. J. Clin.
Pathol. 45: 493-496.
Braithwaite, R. &
McEvoy, L. 2005. Marine biofouling on fish farms and its remediation. Adv. Mar. Biol. 47: 215-252.
Brandi,
G., Sisti, M., Giardini, F., Schiavano, G.F. & Albano, A. 1999. Survival
ability of cytotoxic strains of motile Aeromonas spp. in different types
of water. Lett. Appl. Microbiol. 29: 211-215.
Burkhardt, W. &
Calci, K.R. 2000. Selective accumulation may account for shellfish associated
viral illness. Applied and Environmental Microbiology 66(4): 1375-1378.
Cai,
J., Li, J., Thompson, K.D., Li, C. & Han, H. 2007. Isolation
and characterization of pathogenic of Vibrio parahaemolyticus from
diseased post-larvae of abalone Haliotis diversicolor suprasexta. J. Basic Microbiol. 47: 84-86.
Castro,
D., Pujalte, M.J., Lopez-Cortes, L., Garay, E. & Borrego, J.J. 2002. Vibrios isolated from
the cultured manila clam (Ruditapes philippinarum): Numerical taxonomy
and antibacterial activities. Journal of Applied Microbiology 93:
438-447.
Cavallo, R.A.,
Acquaviva, M.I. & Stabili, L. 2009. Culturable
heterotrophic bacteria in seawater and Mytilus galloprovincialis from a
Mediterranean area (Northern Ionian Sea-Italy). Environ. Monit.
Assess. 149(1-4): 465-475.
Chitanand,
M.P., Kadam, T.A., Gyananath, G., Totewad, N.D. & Balhal, D.K. 2010. Multiple antibiotic resistance indexing
of coliforms to identify high risk contamination sites
in aquatic environment. Indian J. Microbiol. 50:
216-220.
Defossez, J.M. & Hawkins, A.J.S. 1997. Selective feeding
in shellfish: Size dependent rejection of large particles within pseudofaeces
from Mytilus edulis, Ruditapes philippinarum and Tapes
decussatus. Marine Biology 129(1): 139-147.
Dunphy, B.J., Hall,
J.A., Jeffs, A.G. & Wells, R.M.G. 2006. Selective particle feeding by the
Chilean oyster, Ostrea chilensis: Implications for nursery culture and
broodstock conditioning. Aquaculture 261(2): 594-602.
Elhadi,
N., Radu, S., Chen, C.H. & Nishibuchi, M. 2004. Prevalence of potentially
pathogenic Vibrio species in the seafood marketed in Malaysia. Journal
of Food Protection 67(7): 1469-1477.
Gueguen, Y., Herpin, A.,
Aumelas, A., Garnier, J., Fievet, J., Escoubas, J.M., Bulet, P., Gonzalez, M.,
Lelong, C., Favrel, P. & Bachère, E. 2006. Characterization of a defensing
from the oyster Crassostrea gigas: Recombinant production, folding,
solution structure, antimicrobial activities, and gene expression. J. Biol.
Chem. 281: 313-323.
Heidelberg,
J.F., Heidelberg, K.B. & Colwell, R.R. 2002. Bacteria of the
γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied
and Environmental Microbiology 68: 5498-5507.
Holmes,
P., Niccolls, L.M. & Sartory, D.P. 1996. The
ecology of mesophilic Aeromonas in the aquatic environment. Applied
Microbiology 17: 58-60.
Huang, C.H., Renew,
J.E., Smeby, K.L., Pinkerston, K. & Sedlak, D.L. 2001. Assessment
of potential antibiotic contaminants in water and preliminary occurrence
analysis. Water Resour. Update 120: 30-40.
Huss, H. 1997. Control of indigenous pathogenic bacteria in seafood. Food
Control 8: 91-98.
Kueh, C.S. & Chan,
K.Y. 1985. Bacteria in bivalve shellfish with special
reference to the oyster. J. Appl. Bacteriol. 59(1): 41-47.
Kümmerer, K. 2009.
Antibiotics in the aquatic environment: A review-Part II. Chemosphere 75: 435-441.
Lee,
J.K., Jung, D.W., Eom, S.Y., Oh, S.W., Kim, Y.J., Kwak, H.S. & Kim, Y.H.
2008. Occurrence of Vibrio parahaemolyticus in oysters from
Korean retail outlets. Food Control 19: 990-994.
Lees,
D. 2000. Viruses and bivalve shellfish. Int. J. Food
Microbiol 59: 81-116.
Lynn,
M. & Solotorovsky, M. 1981. Chemotherapeutic Agents
for Bacterial Infections. Stroudsburg: Hutchison Ross
Publishers.
Maktoob, A. & Ronald,
H.T. 1997. Handbook of Natural Products from Marine Ivertebrates.
Phyllum mollusca Part. 1. Harwood: Academic
Publishers.
Martinez, J.L. 2003. Recent
advances on antibiotic resistance genes. In Recent
Advances in Marine Biotechnology: Molecular Genetics of Marine Organisms,
edited by Fingerman, N. New Hampshire: Science Publishers. pp.
13-32.
Mazel, D. & Davies,
J. 1999. Antibiotic resistance in microbes. Cellular
and Molecular Life Sciences 56: 742-754.
Medeiros, A.A. 1997.
Evolution and dissemination on β-Lactamase accelerated by generations of
β-lactam antibiotics. Clinical Infection Disease 24: 519-545.
Nonaka, L., Isshiki, T.
& Suzuki, S. 2000. The occurrence of
oxytetracycline-resistant bacteria in the fish intestine and the seawater
environment. Microbes. Environ. 15: 223-228.
Olafsen, J.A.,
Mikkelsen, H.V., Giaver, H.M. & Hansen, G.H. 1993. Indigenous
bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl. Environ. Microbial. 59: 1848-1854.
Olicard,
C., Renault, T., Torhy, C., Benmansour, A. & Bourgougnon, N. 2005. Putative
antiviral activity in hemolymph from adult Pacific oysters, Crassostrea
gigas. Antiviral Res. 66: 147-152.
Oliver, J.D. 1989. Foodborne Bacterial Pathogens. New York: Marcel
Dekker Inc.
Pinera-Pasquino,
L. 2006. Patterns of antibiotic resistance in bacteria isolated from marine turtles.
Master Thesis. College of Charleston, Charleston, South Carolina (Unpublished).
Prieur,
D., Mevel, G., Nicolas, J.L., Plusquellec, A. & Vigneulle, M. 1990. Interactions
between bivalve molluscs and bacteria in the marine environment. Oceanography and Marine Biology Annual Review 28: 277-352.
Projan, S.J. &
Bradford, P.A. 2007. Late stage antibacterial drugs in the clinical pipeline. Curr.
Opin. Microbiol. 10: 441-446.
Pujalte,
M.J., Ortigosa, M., Macian, M.C. & Garay, E. 1999. The annual cycle of
aerobic and facultative anaerobic marine bacteria associated with Mediterranean
oysters and seawater. International Microbiology 2: 259-266.
Roch,
P., Yang, Y., Toubiana, M. & Aumelas, A. 2008. NMR
structure of mussel mytilin, and antiviral–antibacterial activities of
derived synthetic peptides. Dev. Comp. Immunol. 32: 227-238.
Ronald,
J.A., Breena, M. & Melissa, M. 2002. Antibiotic resistance of Gram negative bacteria in Rivers, United States. Emerging
Infectious Disease 8(7): 1-9.
Salyers, A.A., Gupta, A.
& Wang, Y. 2004. Human intestinal bacteria as reservoirs
for antibiotic resistance genes. Trends Microbiol. 12: 412-416.
Santos,
O.C.S., Pontes, P.V.M.L., Santos, J.F.M., Muricy, G., Giambiagi-deMarval, M.
& Laport, M.S. 2010. Isolation, characterization and phylogeny of sponge
associated bacteria with antimicrobial activities from Brazil. Research in
Microbiology 161: 604-612.
Sarter,
S., Nguyen, H.N.K., Hung, L.T., Lazard, J. & Montent, D. 2007. Antibiotic resistance
in Gram negative bacteria isolated from farmed
catfish. Food Control 18: 1391-1396.
Smith,
J.J., Howington, J.P. & McFeters, G.A. 1993. Plasmid maintenance and
expression in Escherichia coli exposed to the Antarctic marine environment. Antarctic Journal of the United States 28: 123-124.
Suantika,
G., Dhert, P., Rombaut, G., Vandenberghe, J., De Wolf, T. & Sorgeloos, P.
2001. The use of ozone in a high density recirculation
system for rotifers. Aquaculture 201: 35-49.
Thavasi,
R., Apernavedi, S., Jayalakshimi, S. & Balasubramanian, T. 2007. Plasmid mediated
antibiotic resistance in marine bacteria. Journal of Environmental Biology 28(3):
617-621.
Thompson,
F.L., Iida, T. & Swings, J. 2004. Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews 68: 403-431.
Urakawa,
H., Yoshida, T., Nishimura, M. & Ohwada, K. 2000. Characterization of
depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches
and quinone profiling. Environ. Microbial. 2: 542-554.
Vandenberghe, J.,
Thompson, F.L., Gomez-Gil, B. & Swings, J. 2003. Phenotypic diversity
amongst Vibrio isolates from marine aquaculture systems. Aquaculture 219: 9-20.
Venter, J.C., Remington,
K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen,
I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W.,
Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson,
H., Pfannkoch, C., Roger, Y.H. & Smith, H.O. 2004. Environmental
genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.
Veronica,
A. 2005. Coastal Environmental Quality Initiative. http://repositoories.cdlib. /ucmarine/ceqi/009. Assessed on 9 July 2005.
Wang,
C., Dang, H. & Ding, Y. 2008. Incidence of diverse integrons and
β-lactamase genes in environmental Enterobacteriaceae isolates from
Jiaozhou Bay, China. World J. Microbiol. Biotechnol. 24:
2889-2896.
Wright,
A.C., Hill, R.T., Johnson, J.A., Roghman, M.C., Colwell, R.R. & Morris,
J.G. Jr. 1996. Distribution of Vibrio vulnificus in the Chesapeake
Bay. Applied and Environmental Microbiology 62: 717-724.
*Corresponding author; email: drasmart@gmail.com
|