Sains Malaysiana 43(4)(2014): 535–542

 

Comparison of Physicochemical Analysis and Antioxidant Activities of Nigella sativa Seeds

and Oils from Yemen, Iran and Malaysia

(Perbandingan Analisis Fizikokimia dan Aktiviti Antioksidan dalam Biji dan Minyak

Nigella sativa dari Yemen, Iran dan Malaysia)

 

 

HASNAH HARON*, CHONG GRACE-LYNN & SUZANA SHAHAR

Nutritional Sciences Programme, School of Health Care, Faculty of Health Sciences

Universiti Kebangsaan Malaysia Kuala Lumpur, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Malaysia

 

Received: 9 November 2011/Accepted: 31 July 2013

 

ABSTRACT

The study was aimed to analyze the physicochemical properties and antioxidant activities in five batches of seeds and oils of Nigella sativa, obtained from Malaysia, Iran and Yemen. Proximate analysis showed that the seeds contained 20.63-28.71% crude fat, 11.35-14.04% crude protein, 5.37-7.93% total moisture, 4.15-4.51% total ash contents and 48.69-57.18% total carbohydrate contents. Physicochemical analysis showed a refractive index of 1.4697-1.4730, specific gravity of 1.369-1.376 g/cm3, peroxide value of 3.33-21.33 meq O2/kg, 184-220 mg/g in saponification number and unsaponifiable matter of 1.1-1.8% in the oil samples. The seeds showed high mineral content such as Ca (2242 mg/kg), K (6393 mg/kg) and Mg (2234 mg/kg). The oil sample from Kelantan, Malaysia contained the lowest saturated fatty acid (SFA) (1.42±0.29%) while Sudan, Yemen contained the highest content of polyunsaturated fatty acid (PUFA) (65.13±5.45%). Monounsaturated fatty acid (MUFA) were found the highest (20.45±2.61%) in the seed samples originated from Iran. Seeds from Iran showed the highest antioxidant activity (IC50 = 1.49 mg/mL) and total phenolic content (30.84 mg GAE/g) while oil sample from Sudan, Yemen has the highest antioxidant activity (IC50 = 4.48 mg/mL). Seeds from Iran have the highest quality among the seed samples while oil samples from Kelantan, Malaysia was the best among the oil samples in terms of low SFA, high PUFA, MUFA and antioxidant activities.

 

Keywords: Antioxidants; Nigella sativa; oil; physicochemical; seeds

 

ABSTRAK

Kajian ini bertujuan menganalisis ciri fizikokimia dan aktiviti antioksidan dalam lima sampel biji dan minyak Nigella sativa yang diperoleh dari Malaysia, Iran dan Yemen. Analisis proksimat menunjukkan biji Nigella sativa mengandungi 20.63-28.71% lemak kasar, 11.35-14.04% protein kasar, 5.37-7.93% air, 4.15-4.51% jumlah abu dan 48.69-57.18% jumlah karbohidrat. Analisis fizikokimia menunjukkan indeks refraktif adalah sebanyak 1.4697-1.4730, spesifik graviti sebanyak 1.369-1.376 g/cm3, nilai peroksida sebanyak 3.33-21.33 meq O2/kg, 184-220 mg/g dalam nombor saponifikasi dan jirim tidak disaponifikasi sebanyak 1.1-1.8% di dalam sampel minyak. Biji menunjukkan kandungan mineral yang tinggi iaitu Ca (2242 mg/kg), K (6393 mg/kg) dan Mg (2234 mg/kg). Sampel minyak dari Kelantan, Malaysia mengandungi asid lemak tepu (SFA) yang terendah (1.42±0.29%) sementara Sudan, Yemen mengandungi kandungan asid lemak poli tak tepu (PUFA) yang tertinggi (65.13±5.45%). Asid lemak mono tak tepu (MUFA) didapati paling tinggi (20.45±2.61%) di dalam sampel biji yang berasal dari Iran. Biji dari Iran menunjukkan aktiviti antioksidan (IC50 = 1.49 mg/mL) dan jumlah kandungan fenolik (30.84 mg GAE/g) yang tertinggi sementara sampel minyak dari Sudan, Yemen mempunyai kandungan aktiviti antioksidan yang tertinggi (IC50 = 4.48 mg/mL). Biji dari Iran mempunyai kualiti yang paling tinggi antara sampel biji yang lain sementara sampel minyak dari Kelantan, Malaysia adalah yang terbaik antara sampel minyak yang lain dari segi rendah SFA, tinggi PUFA, MUFA dan aktiviti antioksidan.

 

Kata kunci: Antioksidan; biji; fizikokimia; minyak; Nigella sativa

REFERENCES

 

Abdel-Aal, E.S.M. & Attia, R.S. 1993. Characterization of black cumin (Nigella sativa) seeds. 2-Proteins. Alexandria Science Exchange 14: 483-496.

Alhaj, N.A., Shamsudin, M.N., Zamri, H.F. & Abdullah, R. 2008. Extraction of essential oil from Nigella sativa using supercritical carbon dioxide: Study of antibacterial activity. American Journal of Pharmacology and Toxicology 3(4): 225-228.

AOAC. 1997. Methods of Analysis of Association of Official Analytical Chemists. 16th ed. Washington, D.C.: AOAC International. pp. 600-792.

AOCS. 1997. Official Methods and Recommended Practices of American Oil Chemists’ Society. 5th ed. Champaign, USA: AOCS Press.

Arici, M., Colak, F.A. & Gecgel, Ü. 2007. Effect of gamma radiation on microbiological and oil properties of black cumin (Nigella sativa L.). Grasas Y Aceites 58(4): 339-343.

Atta, M.B. 2003. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Journal of Food Chemistry 83: 63-68.

Bastic, M., Bastic, L.J., Jovanovic, J.A. & Spiteller, G. 1978. Hydrocarbons and other weakly polar unsaponificables in some vegetable oils. J AOCS 55: 886-892.

Burits, M. & Bucar, F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research 14: 323-328.

Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C. & Attia, H. 2007. N. sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 101(2): 673-681.

Durkee, A.B. 1971. The nature of histamine in rapeseeds (Brassica campestns). Phytochemistry 10: 1583-1586.

Erkan, N., Ayranci, G. & Ayranci, E. 2008. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 110: 76-82.

Folch, J., Lees, M. & Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.

Ghosheh, O.A., Houdi, A.A. & Crooks, P.A. 1999. High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). Journal of Pharmaceutical and Biomedical Analysis 19: 757-762.

Houghton, P.J., Zarka, R., de las Heras, B. & Hoult, J.R.S. 1995. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medica 61: 33-36.

Kirk, R.S. & Sawyer, R. 1991. Pearson's Composition and Analysis of Foods. 9th ed. UK: Longman Scientific & Technical.

Lutterodt, H., Luther, M., Slavin, M., Yin, J.J., Parry, J., Gao, J.M. & Yu. L. 2010. Fatty acid profile, thymoquinone content, oxidative stability and antioxidant properties of cold-pressed black cumin seed oils. Food Science and Technology 43: 1409-1413.

Malecka, M. 2002. Antioxidant properties of the unsaponifiable matter isolated from tomato seeds, oat grains and wheat germ oil. Food Chemistry 79: 327-330.

Mariod, A.A., Ibrahim, R.A., Ismail, M. & Ismail, N. 2009. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chemistry 116: 306-312.

Morsi, N.M. 2000. Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. Acta Microbiologia Polonica 49: 63-74.

Parry, J., Hao, Z., Luther, M., Su, L., Zhou, K. & Yu, L. 2006. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin and milk thistle seed oils. Journal of the American Oil Chemist' Society 83: 847-854.

Patel, R.N., Bandyopadhyay, S. & Ganesh, A. 2008. Economic appraisal of supercritical fluid extraction of phenol from sugarcane bagasse pyrolysis oil. In 11th European Meeting on Supercritical Fluids. Reactions, Materials and Natural Products Processing: Barcellona, Spain.

Pearson, D. 1991. In Pearson's Composition and Analysis of Foods, edited by Kirk, R.S. & Sawyer, R. UK: Longman Scientific & Technical. p. 624.

Ramadan, M.F. 2007. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. International Journal of Food Science & Technology 42: 1208-1218.

Ramadan, M.F. & Morsel, J.T. 2004. Oxidative stability of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. European Journal of Lipid Science and Technology 106(1): 35-43.

Razali, N., Razab, R., Mat Junit, S. & Abdul Aziz, A. 2008. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chemistry 111: 38-44.

Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M.N., Ismail, S. & Mansor, S.M. 2009. In vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. J. Molecules 14: 4476-4485.

Salem, M.L. & Hossain, M.S. 2000. In vivo acute depletion of CD8 (+) T cells before murine cytomegalovirus infection upregulated innate antiviral activity of natural killer cells. International Journal of Immunopharmacology 22: 707-718.

Salvador, M.D., Aranda, F., Gomez-Alonso, S. & Fregapane, G. 2001. Cornicabra virgin olive oil: A study of five crop seasons. Composition, quality and oxidative stability. Food Chemistry 74: 267-274.

Salunkhe, D.K., Chavan, J.K., Adsul, R.N. & Kadam, S. 1992. World Oilseeds: Chemistry, Technology and Utilization. New York: AVI van Nostrand Reinhold.

Singh, G., Marimuthu, P., de Heluani, C.S. & Catalan, C. 2005. Chemical constituents and antimicrobial and antioxidant potentials of essential oils and acetone extract of Nigella sativa seeds. Journal of the Science of Food and Agriculture 85(13): 2297-2306.

Sultan, M.T., Butt, M.S., Anjum, F.M., Jamil, A., Akhtar, S. & Nasir, M. 2009. Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pak. J. Bot. 41(3): 1321-1330.

Takruri, H.M.H. & Dameh, M.A.F. 1998. Study of the nutritional value of black cumin seeds (Nigella sativa L.). Journal of the Sciences of Food Agriculture 76: 404-410.

Yu, L., Haley, S., Perret, J. & Harris, M. 2002. Antioxidant properties of hard winter wheat extracts. Food Chemistry 78: 457-461.

 

 

*Corresponding author; email: hasnah@fsk.ukm.my

 

 

 

previous