Sains Malaysiana 43(7)(2014):
1101–1104
Interval
Symmetric Single-step Procedure ISS2-5D for Polynomial Zeros
(Prosedur Selang Bersimetri Langkah-tunggal ISS2-5D untuk Punca Polinomial)
NORAINI JAMALUDIN1, MANSOR MONSI1 & NASRUDDIN HASSAN2*
1Mathematics Department, Faculty
of Science, Universiti Putra Malaysia
43400 Serdang, Selangor, D.E. Malaysia
2School of Mathematical
Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 24 June 2013/Accepted:
14 October 2013
ABSTRACT
We analyzed the rate of convergence
of a new modified interval symmetric single-step procedure ISS2-5D which
is an extension from the previous procedure ISS2.
The algorithm of ISS2-5D includes the introduction of
reusable correctors δi(k) (i
= 1, …, n) for k ≥ 0. Furthermore, this procedure
was tested on five test polynomials and the results were obtained
using MATLAB
2007 software in association with IntLab
V5.5 toolbox to record the CPU times and the number of iterations.
Keywords: Interval procedure;
polynomial zeros; rate of convergence; simultaneous inclusion; symmetric
single-step
ABSTRAK
Satu analisis dilakukan terhadap kadar
penumpuan bagi
prosedur terubahsuai selang bersimetri langkah-tunggal ISS2-5D baru
yang merupakan lanjutan
daripada prosedur ISS2 sebelumnya. Algoritma ISS2-5D
termasuk pengenalan
pembetulan yang boleh
diguna semula δi(k)
(i = 1, …, n) untuk k ≥ 0. Prosedur ini diuji
ke atas
lima jenis
polinomial dan keputusan diperoleh
menggunakan perisian
MATLAB
2007 dan peralatan
IntLab V5.5 untuk
merekod masa CPU dan
bilangan lelaran.
Kata kunci: Kadar penumpuan;
kemasukan serentak;
prosedur selang; punca polinomial; selang langkah tunggal bersimetri
REFERENCES
Aberth, O. 1973. Iteration methods for finding all zeros of a polynomial
simultaneously. Mathematics of Computation 27: 339-334.
Aitken, A.C.
1950. On the iterative solution of linear equation. Proceedings
of the Royal Society of Edinburgh Section A 63: 52-60.
Alefeld, G. & Herzberger,
J. 1983. Introduction to Interval Computations. New York: Computer Science Academic Press.
Bakar, N.A., Monsi, M. & Hassan, N. 2012. An improved parameter regula falsi method for enclosing a zero of a function. Applied
Mathematical Sciences 6(28): 1347-1361.
Gargantini, I. & Henrici, P.
1972. Circular arithmetics and the
determination of polynomial zeros. Numerische Mathematik18(4): 305-320.
Iliev, A. & Kyurkchiev, N. 2010. Nontrivial
Methods in Numerical Analysis: Selected Topics in Numerical Analysis.
Saarbrucken: Lambert Academic Publishing.
Jamaludin, N., Monsi, M.,
Hassan, N. & Kartini, S. 2013a. On modified
interval symmetric single step procedure ISS2- 5D for the simultaneous
inclusion of polynomial zeros. International Journal of Mathematical
Analysis 7(20): 983-988.
Jamaludin, N., Monsi, M., Hassan, N. & Suleiman, M. 2013b. Modification on interval symmetric single-step procedure ISS-5δ for
bounding polynomial zeros simultaneously. AIP Conf. Proc. 1522: 750-756.
Kyurkchiev, N. 1998. Initial
Approximations and Root Finding Methods. Mathematical Research, Volume 104.
Berlin: Wiley-VCH.
Kyurkchiev, N. &
Markov, S. 1983a. Two interval methods for algebraic equations
with real roots. Pliska Stud. Math. Bulgar. 5: 118-131.
Kyurkchiev, N. &
Markov, S. 1983b. A two-sided analogue of a method of A.W. Nourein for solving an algebraic equation with practically guaranteed accuracy. Ann.
Univ. Sofia, Fac. Math. Mec. 77: 3-10.
Markov, S.
& Kyurkchiev, N. 1989. A method
for solving algebraic equations. Z. Angew.
Math. Mech. 69: 106-107.
Milovanovic, G.V.
& Petkovic, M.S. 1983. A note on some
improvements of the simultaneous methods for determination of polynomial zeros. Journal of Computational and Applied Mathematics 9: 65-69.
Monsi, M.,
Hassan, N. & Rusli, S.F. 2012. The point zoro symmetric
single-step procedure for simultaneous estimation of polynomial
zeros. Journal of Applied Mathematics Article ID: 709832.
Monsi, M. & Wolfe, M.A.
1988. An algorithm for the simultaneous inclusion of real polynomial zeros. Applied
Mathematics and Computation 25: 333-346.
Nourein, A.W. 1977. An improvement on two iteration methods for simultaneous
determination of the zeros of a polynomial. International Journal of
Computer Mathematics 6(3): 241- 252.
Ortega, J.M. & Rheinboldt, W.C. 1970. Iterative
Solution of Nonlinear Equations in Several Variables. New
York: Academic Press.
Petkovic, M.S. 1989. Iterative methods for simultaneous inclusion of polynomial zeros. Lecture Notes in Mathematics. Volume 1387. Berlin: Springer Verlag.
Petkovic, M.S. & Stefanovic, L.V. 1986. On a second order method for the
simultaneous inclusion of polynomial complex zeros in rectangular arithmetic. Archives
for Scientific Computing 36(33): 249-261.
Rump,
S.M. 1999. INTLAB-INTerval LABoratory.
In Tibor Csendes,
Developments in Reliable Computing. Dordrecht: Kluwer Academic Publishers.
Salim,
N.R., Monsi, M., Hassan, M.A & Leong,
W.J. 2011. On
the convergence rate of symmetric single-step method ISS for simultaneous
bounding polynomial zeros. Applied Mathematical Sciences
5(75): 3731-3741.
Sham,
A.W.M., Monsi, M. & Hassan, N. 2013a. An efficient interval
symmetric single step procedure ISS1-5D for simultaneous bounding of real
polynomial zeros. International Journal of Mathematical Analysis 7(20):
977-981.
Sham,
A.W.M., Monsi, M., Hassan, N. & Suleiman, M.
2013b. A modified interval symmetric single step procedure ISS-5D. AIP Conf. Proc. 1522: 61-67.
*Corresponding author; email: nas@ukm.edu.my
|