Sains Malaysiana 43(8)(2014): 1139–1148
Molecular Characterisation and
Expression Analysis of Cathepsin D
from the Asian Seabass Lates calcarifer
(Pencirian Molekul dan Analisis Pengekspresan Katepsin D daripada Ikan Siakap Lates calcarifer)
SHARIZA AZIZAN1, KIEW-LIAN WAN1,2* & ADURA MOHD-ADNAN2
1School of Biosciences and Biotechnology, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor D.E. Malaysia
2Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor,
D.E. Malaysia
Received: 18 May 2013/Accepted: 26 November 2013
ABSTRACT
The lysosomal aspartic proteinase cathepsin D is an acute phase protein involved in various
physiological processes, including vitellogenesis,
yolk processing and immune responses. In this study, we characterised the cathepsin D from the Asian seabass Lates calcarifer and
examined its expression profile during infection. The complete coding sequence
of L. calcarifer cathepsin D consists of 1191 nucleotides, encoding a 396 amino acid protein molecule that
is made up of a putative signal peptide, a leader peptide and a mature peptide.
Phylogenetic analyses showed that two types of cathepsin D are present in the teleost lineage i.e. cathepsin D1 and D2, whereas higher vertebrates possess only one type of cathepsin D. L. calcarifer cathepsin D was clustered together with cathepsin D1 from other teleosts.
Compared to mammalian sequences, L. calcarifer cathepsin D lacks the β-hairpin loop that
forms the double chain and is present as a single chain peptide with conserved
aspartic active sites like other fish. Both multiple sequence alignment and
phylogenetic analysis indicated that the L. calcarifer cathepsin D sequence codes for cathepsin D1 and suggested that it shares the same
functions with cathepsin D from other fish.
Expression profiling analysis of cathepsin D in L. calcarifer infected with Aeromonas hydrophila showed that it is up-regulated in
immune-related tissues such as gills, spleen and liver, suggesting that cathepsin D plays an important role in the innate immune
response of L. calcarifer against pathogens.
Keywords: Acute phase protein; aspartic proteinase; expression
profile; innate immune response
ABSTRAK
Katepsin D, sejenis proteinase
aspartik lisosom
merupakan protein fasa akut yang terlibat dalam pelbagai proses fisiologi, termasuk vitelogenesis, pemprosesan yolka dan gerak
balas keimunan.
Dalam kajian ini,
kami telah mencirikan
katepsin D daripada ikan siakapLates calcarifer dan mengkaji profil pengekspresannya semasa infeksi. Jujukan pengekodan lengkap katepsin D L. calcarifer terdiri
daripada 1191 nukleotida yang
mengekod molekul protein bersaiz 396 asid amino yang
merangkumi satu peptida isyarat putatif, satu peptida
mendahului dan
satu peptida matang.
Analisis filogenetik
menunjukkan bahawa terdapat dua jenis
katepsin D hadir
dalam susur galur
teleost iaitu katepsin
D1 dan D2, sementara vertebrata
peringkat tinggi hanya mempunyai satu jenis katepsin
D. Katepsin D L. calcarifer
dikelompokkan bersama
dengan katepsin
D1 ikan teleost lain. Berbanding
dengan jujukan mamalia, katepsin D L. calcarifer didapati
tidak mempunyai jujukan gelung pin rambut β yang membentuk
rantai ganda
dua dan wujud
sebagai rantai
tunggal peptida dengan kehadiran tapak aktif aspartik
terpulihara seperti
ikan lain. Penjajaran jujukan berbilang dan analisis filogenetik
menunjukkan bahawa
jujukan katepsin D L. calcarifer mengekodkan
katepsin D1 dan mencadangkan ia
mempunyai fungsi
yang sama dengan katepsin
D ikan lain. Analisis
profil pengekspresan katepsin D dalamL. calcarifer terinfeksi
Aeromonas hydrophila mendedahkan bahawa
pengekspresannya meningkat dalam tisu berkait-keimunan
seperti insang,
limpa dan hepar
mencadangkan bahawa katepsin D memainkan peranan yang penting dalam gerak balas
keimunan semula
jadiL. calcarifer terhadap patogen.
Kata kunci: Gerak balas keimunan semula jadi; profil pengeskpresan; proteinase aspartik; protein fasa akut
REFERENCES
Altschul, S.F., Madden, T.L.,
Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman,
D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic
Acids Research 25(17): 3389-3402.
Baldocchi, R.A., Tan, L., King, D.S.
& Nicoll, C.S. 1993. Mass spectrometric analysis of the fragments
produced by cleavage and reduction of rat prolactin: Evidence that the cleaving
enzyme is cathepsin D. Endocrinology 133:
935-938.
Baricos, W.H., Zhou, Y.W., Fuerst,
R.S., Barrett, A.J. & Shah, S.V. 1987. The role of
aspartic and cysteine proteinase in albumin degradation by rat-kidney cortical lysosmes. Archives of Biochemistry and Biophysics 256(2): 687-691.
Barret, A.J. 1977. Cathepsin D and other carboxyl
proteinases. In Proteinases in Mammalian Cells and
Tissues. New York: North Holland Publishing Company.
Bendsten, J.D., Nielsen, H., von-Heijne,
G. & Brunak, S. 2004. Improved prediction of
signal peptides: SignalP 3.0. Journal of Molecular
Biology 340: 783-795.
Benes, P., Vetvicka, V. & Fusek, M.
2008. Cathepsin D - Many functions of one aspartic protease. Critical Reviews in
Oncology/Hematology 68: 12-28.
Brooks, S., Tyler, C.R., Carnevali, O., Coward, K. & Sumpter,
J.P. 1997. Molecular
characterization of ovarian cathepsin D in the rainbow
trout, Onchorhynchus mykiss. Gene 201(1-2): 45-54.
Carnevali, O., Centtonze, F.,
Brooks, S., Marota, I. & Sumpter,
J.P. 1999. Molecular cloning and expression of ovarian cathepsin D in seabream, Sparus aurata. Biology of Reproduction 61: 785-791.
Carnevali, O., Ciona,
C., Tosti, L., Lubzens, E.
& Maradonna, F. 2005. Role of cathepsin D in ovarian follicle growth and maturation. General and Comparative
Endocrinology 146(3): 195-203.
Cho, J.H., Park, I.Y., Kim,
H.S., Lee, W.T., Kim, M.S. & Kim, S.C. 2002. Cathepsin D produces
antimicrobial peptide parasin I from histone H2A in
the skin mucosa of fish. FASEB Journal 16: 429-431.
Chong, P.P., Mohd-Adnan,
A. & Wan, K.L. 2011. Characterization of simple sequence repeats in the
Asian Seabass, Lates calcarifer by random sequencing. Sains Malaysiana40(5): 497-502.
Chou, R. & Lee, H.B. 1997. Commercial marine fish farming in Singapore. Aquaculture
Research 28: 767-776.
Daskalov, H. 2006. The importance of Aeromonas hydrophilain
food safety. Food Control 17: 474-483.
Dobberstein, B. 1987. Structure and function of the
signal recognition particle (SRP). Molecular Biology Reports 2(3):
213-217.
Ewing, B. & Green, P. 1998. Base-calling of
automated sequencer traces using Phred. II. error probabilities. Genome Research 8: 186-194.
Feng, T., Zhang, H., Liu, H., Zhou, Z., Niu, D., Wong, L., Kucuktas, H.,
Liu, X., Peatman, E. & Liu, Z. 2011. Molecular characterization and expression analysis of the channel
catfish cathepsin D genes. Fish and
Shellfish Immunology 31(1): 164-169.
Gilberg, A. 1988. Aspartic proteinases in
fishes and aquatic invertebrates. Comparative Biochemistry and
Physiology Part B Biochemistry and Molecular Biology 91: 425-435.
Guindon, S., Dufayard,
J., Lefort, V., Anisimova,
M., Hordijk, W. & Gascuel,
O. 2010. New algorithms and methods
to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.
Hatha, M., Vivekanandhan, A.A., Joice, G.J.
& Christol. 2005. Antibiotic resistance pattern of motile aeromonad from farm raised fresh water fish. International Journal of Food
Microbiology 98(2): 131-134.
Henderson, I.W., Hazon, N. & Hughes, K. 1985. Hormones, ionic regulation and kidney function
in fishes. Symposia of the Society Experimental Biology 39: 245-265.
Hurley, M.J., Larsen, L.B.,
Kelly, A.L. & McSweeney, P.L.H. 2000. The milk acid proteinase cathepsin D: A review. International Dairy Journal 10: 673-681.
Jia, A. & Zhang, X.H. 2009. Molecular
cloning, characterization and expression analysis of cathepsin D gene from turbot Scophthalmus maximus. Fish and Shellfish Immunology 26:
606-613.
Khoo, C.K., Mohd-Adnan,
A., Kua, B.C. & Abdul-Murad, AM. 2009. Fabrication of Lates
calcarifer cDNA microarray slide.
Sains Malaysiana
38: 609-617.
Krieger, T. & Hook, V.Y.H. 1992. Purification and characterization of a cathepsin D protease from bovine chromaffin granules. Biochemistry 31: 4223-4231.
Kumar, R.S., Ijiri, S.
& Trant, J.M. 2000. Changes in
the expression of genes encoding steroidogenic enzymes in the channel catfish (Ictalurus punctatus) ovary throughout a reproductive cycle. Biology of Reproduction 63: 1676-1682.
Kurokawa, T., Uji,
S. & Suzuki, T. 2005. Identification of pepsinogen gene in the genome
of stomachless fish, Takifugu rubripes. Comparative Biochemistry and
Physiology Part B Biochemistry and Molecular Biology 140: 133-140.
Le, S.Q. & Gascuel, O. 2008. An improved general amino acid replacement
matrix. Molecular Biology and Evolution 25(7): 1307-1320.
Lee, J.H., Wan, K.L. & Mohd-Adnan,
A. 2012. Molecular characterization of hepcidin in
the Asian seabass (Lates calcarifer) provides insights into its innate
immune response. Aquaculture 330-333: 8-14.
Liu, X., Shi, G., Cui, D.,
Wang, R. & Xu, T. 2012. Molecular cloning and comprehensive
characterization of cathepsin D in the Miiuy croaker Miichthys miiuy. Fish and Shellfish Immunology 32:
464-468.
Metcalf, P. & Fusek, M. 1993. Two crystal structures for cathepsin D:
The lysosomal targeting signal and active site. The
EMBO Journal 12(4): 1293-1302.
Mohamed-Jawad,
L.A.H., Rabu, A., Mohamed, R. & Mohd- Adnan, A. 2012. Phylogenetic characterization and the
expression of recombinant C-reactive protein from the Asian seabass (Lates calcarifer). Aquaculture 338-341: 13-22.
Mohd-Padil, H., Tajul-Arifin,
K. & Mohd-Adnan, A. 2010. Characterization of the
functional domain of β2-microglobulin from the Asian seabass, Lates calcarifer. PLoS One 5(10): e13159.
Mommsen, T.P. 2004. Salmon spawning migration
and muscle protein metabolism: The August Krogh Principle at work. Comparative
Biochemistry and Physiology Part B Biochemistry and Molecular Biology 139(3):
383-400.
Mohd-Yusof, N.Y., Hoh, C.C., Mohd-Adnan, A. & Wan, K.L. 2009. Identification of immune-related genes by analysis
of spleen expressed sequences tags from the Asian seabass,
Lates calcarifer.
Sains Malaysiana
38(6): 939-945.
Nelson, J. 1994. Fishes of
the World. New Jersey: John Wiley & Son.
Nielsen, B.L. & Nielsen, H.H. 2001.
Purification and characterization of cathepsin D from
herring muscle (Clupea harengus). Comparative Biochemistry and Physiology Part B Biochemistry and Molecular
Biology 128(2): 351-363.
Park, I.Y., Park, C.B.,
Kim, M.S. & Kim, S.C. 1998. Parasin I, an antimicrobial peptide
derived from histon H2A in the catfish, Parasilurus asotus.
FEBS Letters 437: 258-262.
Pfaffl, M.W., Horgan, G.W.
& Dempfle, L. 2002. Relative expression software
tool (REST) for group-wise comparison and statistical analysis of relative
expression results in real-time PCR. Nucleic Acids Research 30: 1-10.
Riggio, M., Sscudiero,
R., Filosa, S. & Parisi,
E. 2000. Sex-and
tissue-specific expression of aspartic proteinases in Danio rerio(zebrafish). International Journal of Genes and Genomes Evolution 260: 67-75.
Rojo, L., Sotelo-Mundo,
R., Garcia-Carreno, F. & Graf, L. 2010. Isolation, biochemical characterization, and
molecular modeling of American lobster digestive cathepsin D1. Comparative Biochemistry and Physiology Part B Biochemistry and
Molecular Biology 157(4): 394-400.
Ronquist, F. & Huelsenbeck,
J.P. 2003. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19: 1572-1574.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar,
S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum
likelihood, evolutionary distance, and maximum parsimony methods. Molecular
Biology and Evolution 28: 2731-2739.
Tan, S.L., Mohd-Adnan, A., Mohd-Yusof, N.Y., Forstner, M.R.J. & Wan, K.L. 2008. Identification and analysis of a prepro-chicken gonadotropin releasing hormone II (preprocGnRH-II) precursor in the Asian seabass, Lates calcarifer,
based on an EST-based assessment of its brain transcriptome. Gene 411: 77-86.
*Corresponding author; email: klwan@ukm.edu.my
|