Sains Malaysiana 43(8)(2014): 1139–1148

 

Molecular Characterisation and Expression Analysis of Cathepsin D

from the Asian Seabass Lates calcarifer

(Pencirian Molekul dan Analisis Pengekspresan Katepsin D daripada Ikan Siakap Lates calcarifer)

 

 

SHARIZA AZIZAN1, KIEW-LIAN WAN1,2* & ADURA MOHD-ADNAN2

 

1School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia

 

2Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor, D.E. Malaysia

 

Received: 18 May 2013/Accepted: 26 November 2013

 

ABSTRACT

The lysosomal aspartic proteinase cathepsin D is an acute phase protein involved in various physiological processes, including vitellogenesis, yolk processing and immune responses. In this study, we characterised the cathepsin D from the Asian seabass Lates calcarifer and examined its expression profile during infection. The complete coding sequence of L. calcarifer cathepsin D consists of 1191 nucleotides, encoding a 396 amino acid protein molecule that is made up of a putative signal peptide, a leader peptide and a mature peptide. Phylogenetic analyses showed that two types of cathepsin D are present in the teleost lineage i.e. cathepsin D1 and D2, whereas higher vertebrates possess only one type of cathepsin D. L. calcarifer cathepsin D was clustered together with cathepsin D1 from other teleosts. Compared to mammalian sequences, L. calcarifer cathepsin D lacks the β-hairpin loop that forms the double chain and is present as a single chain peptide with conserved aspartic active sites like other fish. Both multiple sequence alignment and phylogenetic analysis indicated that the L. calcarifer cathepsin D sequence codes for cathepsin D1 and suggested that it shares the same functions with cathepsin D from other fish. Expression profiling analysis of cathepsin D in L. calcarifer infected with Aeromonas hydrophila showed that it is up-regulated in immune-related tissues such as gills, spleen and liver, suggesting that cathepsin D plays an important role in the innate immune response of L. calcarifer against pathogens.

 

Keywords: Acute phase protein; aspartic proteinase; expression profile; innate immune response

 

ABSTRAK

Katepsin D, sejenis proteinase aspartik lisosom merupakan protein fasa akut yang terlibat dalam pelbagai proses fisiologi, termasuk vitelogenesis, pemprosesan yolka dan gerak balas keimunan. Dalam kajian ini, kami telah mencirikan katepsin D daripada ikan siakapLates calcarifer dan mengkaji profil pengekspresannya semasa infeksi. Jujukan pengekodan lengkap katepsin D L. calcarifer terdiri daripada 1191 nukleotida yang mengekod molekul protein bersaiz 396 asid amino yang merangkumi satu peptida isyarat putatif, satu peptida mendahului dan satu peptida matang. Analisis filogenetik menunjukkan bahawa terdapat dua jenis katepsin D hadir dalam susur galur teleost iaitu katepsin D1 dan D2, sementara vertebrata peringkat tinggi hanya mempunyai satu jenis katepsin D. Katepsin D L. calcarifer dikelompokkan bersama dengan katepsin D1 ikan teleost lain. Berbanding dengan jujukan mamalia, katepsin D L. calcarifer didapati tidak mempunyai jujukan gelung pin rambut β yang membentuk rantai ganda dua dan wujud sebagai rantai tunggal peptida dengan kehadiran tapak aktif aspartik terpulihara seperti ikan lain. Penjajaran jujukan berbilang dan analisis filogenetik menunjukkan bahawa jujukan katepsin D L. calcarifer mengekodkan katepsin D1 dan mencadangkan ia mempunyai fungsi yang sama dengan katepsin D ikan lain. Analisis profil pengekspresan katepsin D dalamL. calcarifer terinfeksi Aeromonas hydrophila mendedahkan bahawa pengekspresannya meningkat dalam tisu berkait-keimunan seperti insang, limpa dan hepar mencadangkan bahawa katepsin D memainkan peranan yang penting dalam gerak balas keimunan semula jadiL. calcarifer terhadap patogen.

 

Kata kunci: Gerak balas keimunan semula jadi; profil pengeskpresan; proteinase aspartik; protein fasa akut

REFERENCES

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25(17): 3389-3402.

Baldocchi, R.A., Tan, L., King, D.S. & Nicoll, C.S. 1993. Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: Evidence that the cleaving enzyme is cathepsin D. Endocrinology 133: 935-938.

Baricos, W.H., Zhou, Y.W., Fuerst, R.S., Barrett, A.J. & Shah, S.V. 1987. The role of aspartic and cysteine proteinase in albumin degradation by rat-kidney cortical lysosmes. Archives of Biochemistry and Biophysics 256(2): 687-691.

Barret, A.J. 1977. Cathepsin D and other carboxyl proteinases. In Proteinases in Mammalian Cells and Tissues. New York: North Holland Publishing Company.

Bendsten, J.D., Nielsen, H., von-Heijne, G. & Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340: 783-795.

Benes, P., Vetvicka, V. & Fusek, M. 2008. Cathepsin D - Many functions of one aspartic protease. Critical Reviews in Oncology/Hematology 68: 12-28.

Brooks, S., Tyler, C.R., Carnevali, O., Coward, K. & Sumpter, J.P. 1997. Molecular characterization of ovarian cathepsin D in the rainbow trout, Onchorhynchus mykiss. Gene 201(1-2): 45-54.

Carnevali, O., Centtonze, F., Brooks, S., Marota, I. & Sumpter, J.P. 1999. Molecular cloning and expression of ovarian cathepsin D in seabream, Sparus aurata. Biology of Reproduction 61: 785-791.

Carnevali, O., Ciona, C., Tosti, L., Lubzens, E. & Maradonna, F. 2005. Role of cathepsin D in ovarian follicle growth and maturation. General and Comparative Endocrinology 146(3): 195-203.

Cho, J.H., Park, I.Y., Kim, H.S., Lee, W.T., Kim, M.S. & Kim, S.C. 2002. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB Journal 16: 429-431.

Chong, P.P., Mohd-Adnan, A. & Wan, K.L. 2011. Characterization of simple sequence repeats in the Asian Seabass, Lates calcarifer by random sequencing. Sains Malaysiana40(5): 497-502.

Chou, R. & Lee, H.B. 1997. Commercial marine fish farming in Singapore. Aquaculture Research 28: 767-776.

Daskalov, H. 2006. The importance of Aeromonas hydrophilain food safety. Food Control 17: 474-483.

Dobberstein, B. 1987. Structure and function of the signal recognition particle (SRP). Molecular Biology Reports 2(3): 213-217.

Ewing, B. & Green, P. 1998. Base-calling of automated sequencer traces using Phred. II. error probabilities. Genome Research 8: 186-194.

Feng, T., Zhang, H., Liu, H., Zhou, Z., Niu, D., Wong, L., Kucuktas, H., Liu, X., Peatman, E. & Liu, Z. 2011. Molecular characterization and expression analysis of the channel catfish cathepsin D genes. Fish and Shellfish Immunology 31(1): 164-169.

Gilberg, A. 1988. Aspartic proteinases in fishes and aquatic invertebrates. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 91: 425-435.

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.

Hatha, M., Vivekanandhan, A.A., Joice, G.J. & Christol. 2005. Antibiotic resistance pattern of motile aeromonad from farm raised fresh water fish. International Journal of Food Microbiology 98(2): 131-134.

Henderson, I.W., Hazon, N. & Hughes, K. 1985. Hormones, ionic regulation and kidney function in fishes. Symposia of the Society Experimental Biology 39: 245-265.

Hurley, M.J., Larsen, L.B., Kelly, A.L. & McSweeney, P.L.H. 2000. The milk acid proteinase cathepsin D: A review. International Dairy Journal 10: 673-681.

Jia, A. & Zhang, X.H. 2009. Molecular cloning, characterization and expression analysis of cathepsin D gene from turbot Scophthalmus maximus. Fish and Shellfish Immunology 26: 606-613.

Khoo, C.K., Mohd-Adnan, A., Kua, B.C. & Abdul-Murad, AM. 2009. Fabrication of Lates calcarifer cDNA microarray slide. Sains Malaysiana 38: 609-617.

Krieger, T. & Hook, V.Y.H. 1992. Purification and characterization of a cathepsin D protease from bovine chromaffin granules. Biochemistry 31: 4223-4231.

Kumar, R.S., Ijiri, S. & Trant, J.M. 2000. Changes in the expression of genes encoding steroidogenic enzymes in the channel catfish (Ictalurus punctatus) ovary throughout a reproductive cycle. Biology of Reproduction 63: 1676-1682.

Kurokawa, T., Uji, S. & Suzuki, T. 2005. Identification of pepsinogen gene in the genome of stomachless fish, Takifugu rubripes. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 140: 133-140.

Le, S.Q. & Gascuel, O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25(7): 1307-1320.

Lee, J.H., Wan, K.L. & Mohd-Adnan, A. 2012. Molecular characterization of hepcidin in the Asian seabass (Lates calcarifer) provides insights into its innate immune response. Aquaculture 330-333: 8-14.

Liu, X., Shi, G., Cui, D., Wang, R. & Xu, T. 2012. Molecular cloning and comprehensive characterization of cathepsin D in the Miiuy croaker Miichthys miiuy. Fish and Shellfish Immunology 32: 464-468.

Metcalf, P. & Fusek, M. 1993. Two crystal structures for cathepsin D: The lysosomal targeting signal and active site. The EMBO Journal 12(4): 1293-1302.

Mohamed-Jawad, L.A.H., Rabu, A., Mohamed, R. & Mohd- Adnan, A. 2012. Phylogenetic characterization and the expression of recombinant C-reactive protein from the Asian seabass (Lates calcarifer). Aquaculture 338-341: 13-22.

Mohd-Padil, H., Tajul-Arifin, K. & Mohd-Adnan, A. 2010. Characterization of the functional domain of β2-microglobulin from the Asian seabass, Lates calcarifer. PLoS One 5(10): e13159.

Mommsen, T.P. 2004. Salmon spawning migration and muscle protein metabolism: The August Krogh Principle at work. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 139(3): 383-400.

Mohd-Yusof, N.Y., Hoh, C.C., Mohd-Adnan, A. & Wan, K.L. 2009. Identification of immune-related genes by analysis of spleen expressed sequences tags from the Asian seabass, Lates calcarifer. Sains Malaysiana 38(6): 939-945.

Nelson, J. 1994. Fishes of the World. New Jersey: John Wiley & Son.

Nielsen, B.L. & Nielsen, H.H. 2001. Purification and characterization of cathepsin D from herring muscle (Clupea harengus). Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 128(2): 351-363.

Park, I.Y., Park, C.B., Kim, M.S. & Kim, S.C. 1998. Parasin I, an antimicrobial peptide derived from histon H2A in the catfish, Parasilurus asotus. FEBS Letters 437: 258-262.

Pfaffl, M.W., Horgan, G.W. & Dempfle, L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30: 1-10.

Riggio, M., Sscudiero, R., Filosa, S. & Parisi, E. 2000. Sex-and tissue-specific expression of aspartic proteinases in Danio rerio(zebrafish). International Journal of Genes and Genomes Evolution 260: 67-75.

Rojo, L., Sotelo-Mundo, R., Garcia-Carreno, F. & Graf, L. 2010. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 157(4): 394-400.

Ronquist, F. & Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.

Tan, S.L., Mohd-Adnan, A., Mohd-Yusof, N.Y., Forstner, M.R.J. & Wan, K.L. 2008. Identification and analysis of a prepro-chicken gonadotropin releasing hormone II (preprocGnRH-II) precursor in the Asian seabass, Lates calcarifer, based on an EST-based assessment of its brain transcriptome. Gene 411: 77-86.

 

 

*Corresponding author; email: klwan@ukm.edu.my

 

 

 

previous