Sains Malaysiana 43(8)(2014):
1149–1156
Biological
Carbon Dioxide Sequestration Potential of Bacillus pumilus
(Potensi Pemencilan Biologi Karbon Dioksida oleh Bacillus pumilus)
T. KOMALA*
& TAN. C. KHUN
Faculty of Engineering and
Green Technology, Universiti Tunku Abdul Rahman, Perak Campus
Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
Received: 9 August 2013/Accepted:
15 December 2013
ABSTRACT
Bacillus pumilis was isolated and
identified from limestone and the ability towards carbon dioxide (CO2)
sequestration was demonstrated. B. pumilus (S3 SC_1), isolated from Gua Tempurung, Gopeng, Perak was able to form calcite in the
presence of calcium ions. B. pumilus was
successfully characterized by using conventional biochemical characterization
and 16s rDNA sequencing.
Three types of experimental systems with B. pumilus,
without B. pumilus and without continuous
supply of CO2 with
the presence of B. pumilus which could produce
extracellular carbonic were studied to determine the effects of bacterially
produced carbonic anhydrase (CA) by B. pumilus in removing CO2 as
calcite. Through our current study, CO2 sequestration
ability of B. pumilus was proven.
Keywords: B. pumilus; carbon dioxide sequestration; carbonic
anhydrase; characterization
ABSTRAK
Bacillus pumilis telah diasingkan dan dikenal pasti daripada batu kapur dan keupayaan ke arah pemencilan karbon dioksida (CO2) telah dijalankan. B. pumilus (S3
SC_1) diasingkan dari Gua Tempurong, Gopeng, Perak mampu membentuk kalsit dengan kehadiran ion kalsium. B.pumilus berjaya dicirikan dengan menggunakan pencirian biokimia konvensional dan 16s rDNA. Tiga jenis sistem percubaan denganB. pumilus, tanpa B. pumilus dan tanpa bekalan berterusan CO2 dengan kehadiranB. pumilus yang boleh menghasilkan ekstrasel carbonik telah dikaji untuk menentukan kesan bakteria hasilan karbonik anhidrase (CA) oleh B. pumilus dalam menghapuskan CO2 sebagai kalsit. Melalui kajian ini, CO2 keupayaan pemencilan oleh B. pumilus telah dibuktikan.
Kata kunci: B. pumilus; karbonik anhidrase; pemencilan karbon dioksida; pencirian
REFERENCES
Achal, V. & Pan, X. 2011. Characterization
of urease and carbonic anhydrase producing bacteria and their role in calcite
precipitation. Current Microbiology 62: 894-902.
Adiguzel, A., Ozkan,
H., Baris, O., Inan, K., Gulluce, M. & Sahin, F. 2009. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. Journal
of Microbiological Methods 79: 321-328.
Ana, B. & Baltasar, M. 2006. PCR DGGE as a tool for characterizing dominant microbial
populations in the Spanish blue-veined Cabrals cheese. International Dairy Journal 16: 1205-1210.
Aunpad, R. & Na-Bangchang,
K. 2007. Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilusstrain WAPB4. Current Microbiology 55(4):
308-313.
Ayesegul, E.Y., Feride, I.S.
& Mehmet, H. 2008. Isolation of endophytic and xylanolytic Bacillus pumilusstrains
from zea mays. Brazilian Archieves of Biology and Technology 14: 374-380.
Baskar, S., Baskar,
R., Mauclaire, L. & McKenzie, J.A. 2006. Microbially induced
calcite precipitation in culture experiments: Possible origin for stalactites
in Sahastradhara caves, Dehradun, India. Current
Science 90: 58-64.
Battan, B., Sharma, J., Dhiman, S.S. & Kuhad, R.C. 2007. Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilusASH and its potential application in
paper industry. Enzyme Microbial Technology 41: 733-739.
Bhat, M.K. & Bhat, S.
1997. Cellulose degrading enzymes and their potential industrual applications. Biotechnological
Advances 15: 583-620.
Boquet, E., Boronat,
A. & Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate)
crystals by soil bacteria is a general phenomenon. Nature 246: 527-529.
Buthelezi, S.P., Olaniran,
A.O. & Pillay, B. 2010. Sawdust and digestive
bran as cheap alternate substrates for xynalase production. Journal of Microbiology Research 5: 742-752.
De Wulf, P. & Vandamme, E.J. 1997. Production of
D-ribose by fermentation. Applied Microbial Biotechnology 48:
141-148.
Duarte, M.C.T., Pellegrino,
A.N.A., Portugal, E.P., Ponezi, A.N. & Franco,
T.T. 2000. Characterization
of alkaline xynalase from Bacillus pumilus. Brazilian Journal of Microbiology 31:
90-94.
Garbeva, P., Van Veen, J.A.
& Van Elsas, J.D. 2003. Predominant Bacillus spp.
in agricultural soil under different management regimes detected via PCR-DGGE. Microbiology
Ecology 45: 302-316.
Gray, E.J., Lee, K.D., Souleimanov, A.M., Di Falco, M.R., Zhou, X., Ly, A.,
Charles, T.C., Driscoll, B.T. & Smith, D.L. 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. Journal of Applied Microbiology 100:
545-554.
Hassan, F., Khan, S., Shah, A.A. & Hameed,
A. 2009. Production of antibacterial compounds by free and
immobilized Bacillus pumilusSAF1. Pakistan
Journal of Botany 41: 1499-1510.
Hidayah, A., Mohd, A.H., Umi Kalson, M.S., Norhafizah, A., Farinazleen, M.G.
& Yoshihito, S. 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. Journal of Bioscience and Bioengineering 6: 231-236.
Jang, H.D. & Chen, K.S. 2003. Production and characterization of thermostable cellulases from Streptomyces transformant T 3-1. World Journal of Microbiology and Biotechnology 19:
263-268.
Kapoor, M., Nair, L.M.
& Kuhad, R.C. 2008. Cost-effective xynalase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Proscopis juliflora. Biochemistry Engineering Journal 38: 88-97.
Klaenhammer, T.R. 1988. Bacteriocins of lactic acid
bacteria. Biochemie 70: 337-349.
Komala, T. & Khun, T.C.
2013. Calcite-forming bacteria located in limestone area of Malaysia. Journal
of Asian Scientifc Research 3(5): 471-484.
Kotchoni, S.O., Gachomo, E.W., Omafuvbe, B.O. & Shonukan,
O.O. 2006. Purification and biochemical characterization of Carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. International Journal of Agriculture & Biology 8: 286-292.
Kumar, G.A., Swarnaltha,
S., Gayathri, S., Nagesh,
N. & Sekaran, G. 2008. Characterization
of an alkaline active - thio forming extracellular
serine keratinase by the newly isolated Bacillus pumilus. Journal of Applied Microbiology 104(2):
411-419.
Lee, Y.N. 2003. Calcite
production by Bacillus amyloliquefaciensCMB01. Journal of Microbiology 41: 345-348.
Li, W., Liu, L.P., Zhou,
P.P., Cao, L., Yu, L.J. & Jiang, S.Y. 2011. Calcite precipitation induced by bacteria and
bacterially produced carbonic anhydrase. Current Science 100: 502-508.
Liu, M. & Liu, G. 2008. Expression of recombinant Bacillus licheniformisxynalase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expression Purification 57:
101-107.
Miyagawa, K., Miyazaki, J. & Kanazaki,
N. 1992. Method of producing D-ribose. Patent European patent 0501765A1.
Monisha, R., Uma, M.V. &
Murthy, V.K. 2009. Partial
purification and characterization of Bacillus pumilus xynalase from soil source. Kathmandu
University Journal of Science, Engineering and Technology 5: 137-148.
Papagianni, M. 2003. Ribosomally synthesized peptide with antimicrobial properties: Biosynthesis, structure,
function, and applications. Biotechnology Advances 21: 465-499.
Polat, M.F. & Nalbantoglu,
B. 2002. In vitro esterase activity fo carbonic anhyrase on
total esterase activity level in serum. Turkish Journal of Medical Sciences 32:
299-302.
Prabhu, C., Wanjari, S., Gawande, S., Das, S., Labhsetwar,
N., Kotwal, S., Puri, A.K., Satyanarayana, T. & Rayalu,
S. 2009. Immobilization of carbonic anhydrase enriched microorganism on
biopolymer based materials. Journal of Molecular Catalysis B: Enzymatic 60:
13-21.
Prabhu, C., Valechha, A., Wanjari, S., Labhsetwar, N., Kotwal, S., Satyanarayanan, T.
& Rayalu, S. 2011. Carbon
composite beads for immobilization of carbonic anhydrase. Journal of
Molecular Catalysis B: Enzymatic 71: 71-78.
Rahman, M.A., Oomori, T.
& Uehara, T. 2007. Carbonic
anhydrase in calcified endoskeleton: Novel activity in biocalcification in alcynonarian. Marine Biotechnology 10:
31-38.
Ruiz, C., Blanco, A., Pastor, F.I.J. & Diaz,
P. 2002. Analysis of Bacillus megaterium lipolytic system and cloning of Lip A, a novel
subfamily I.4 bacteril lipase. Federation
of European Material Societies Microbiology Letters 217: a263-a267.
Shakoori, F.R., Tabassum, S., Rehman, A. & Shakoori, A.R.
2010. Isolation and characterization of Cr6+ reducing
bacteria and their potential use in bioremediation of chromium containing
wastewater. Pakistan Journal of Zoology 42: 651-658.
Sharma, A., Bhattacharya,
A., Pujari, R. & Shrivastava, A. 2008. Characterization of carbonic
anhydrase from diversified genus for biomimetic carbon-dioxide sequestration. Indian Journal of Microbiology 48: 365-371.
Siktar, E. 2009. The effect of L-cartinie on carbonic anhydrase level in rats exposed to exhaustive exercise and
hypothermic stress. African Journal of Biotechnology 8(13): 3060-3065.
Taggart, J.B., Hynes, R.A., Prodohl,
P.A. & Ferguson, A. 1992. A simplied protocol for routine total DNA isolation from salmonid fishes. Journal of Fish Biology 40: 963-965.
Tamura, K., Dudley, J., Nei,
M. & Kumar, S. 2007. MEGA 4: Molecular evolutionary genetics analysis
(MEGA) software version 4.0. Molecular Biology and Evolution 24:
1596-1599.
Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F.
& Higgins, D. 1997. The ClustalX Windows interface: Flexible strategies for
multiple sequence alignment aided by quality analysis tools. Nucleic Acids
Research 24: 4876-4886.
Yadav, R., Satyaranayanan, T., Kotwal, S.
& Rayalu. S. 2011. Enhanced carbonation reaction using chitosan-based
carbonic anhyrase nanoparticles. Current Science 100:
520-524.
*Corresponding author; email: komal_thiru@yahoo.com
|