Sains Malaysiana 43(8)(2014): 1271-1274

 

Solving Linear Multi-Objective Geometric Programming Problems

via Reference Point Approach

(Menyelesaikan Masalah Linear Berbilang Objektif Geometri Pengaturcaraan melalui

Pendekatan Titik Rujukan)

 

F. Bazikar & M. Saraj*

Department of Mathematics, Faculty of Mathematical Sciences and Computer

Shahid Chamran University of Ahvaz, Ahvaz, Iran

 

Received: 15 June 2013/Accepted: 16 December 2013

 

Abstract

In the last few years we have seen a very rapid development on solving generalized geometric programming (GGP) problems, but so far less works has been devoted to MOGP due to the inherent difficulty which may arise in solving such problems. Our aim in this paper was to consider the problem of multi-objective geometric programming (MOGP) and solve the problem via two-level relaxed linear programming problem Yuelin et al. (2005) and that is due to simplicity which occurs through linearization i.e. transforming a GP to LP. In this approach each of the objective functions in multi-objective geometric programming is individually linearized using two-level linear relaxed bound method, which provides a lower bound for the optimal values. Finally our MOGP is transformed to a multi-objective linear programming problem (MOLP) which is solved by reference point approach. In the end, a numerical example is given to investigate the feasibility and effectiveness of the proposed approach.

Keywords: Geometric programming; linearization technique; multi-objective programming; reference point method

 

ABSTRAK

Sejak beberapa tahun lepas, kita telah melihat pembangunan yang sangat pesat dalam masalah penyelesaian am geometri pengaturcaraan (GGP), tetapi setakat terdapat kurang kajian tentang MOGP kerana wujud kesukaran yang mungkin timbul dalam menyelesaikan masalah tersebut. Matlamat kami dalam kertas ini adalah untuk mempertimbangkan masalah pengaturcaraan pelbagai objektif geometri (MOGP) dan menyelesaikan masalah ini melalui masalah pengaturcaraan linear santai dua peringkat Yuelin et al. (2005) dan yang adalah kerana kemudahan yang berlaku melalui pelinearan iaitu transformasi GP ke LP. Dalam pendekatan ini, setiap satu daripada fungsi objektif dalam pengaturcaraan pelbagai objektif geometri secara individu adalah dilinearkan menggunakan kaedah terikat santai linear dua peringkat, yang memberikan sesuatu had lebih rendah bagi nilai yang optimum. Akhirnya MOGP ini berubah menjadi sebuah masalah pengaturcaraan linear pelbagai objektif (MOLP) yang diselesaikan melalui pendekatan titik rujukan. Akhirnya contoh berangka diberikan untuk mengkaji kemungkinan dan keberkesanan pendekatan yang dicadangkan.

Kata kunci: Kaedah titik rujukan; pelbagai objektif pengaturcaraan; pengaturcaraan geometri; pelinearan teknik

 

 

References

Li, Y.M. & Chen, Y-C. 2010. Temperature -aware floor planning via geometric programming. Mathematical and Computer Modeling 51: 927-934.

Liu, S-T. 2006. A geometric programming approach to profit maximization. Applied Mathematics and Computation 182: 1093-1097.

Sahidul, I. 2008. Multi-objective marketing planning inventory model: A geometric programming approach. Applied Mathematics and Computation 205: 238-246.

Shen, P-P., Li, X-A. & Jiao, H-W. 2008. Accelerating method of global optimization for signomial geometric programming. Journal of Computational and Applied Mathematics 214: 66-77.

Shen, P. & Zhang, K. 2004. Global optimization of signomial geometric programming using linear relaxation. Applied Mathematics and Computation 150: 99-114.

Qu, S., Zhang, K. & Wang, F. 2008. A global optimization using linear relaxation for generalized geometric programming. European Journal of Operational Research 190: 345-356.

Wu, Y-K. 2008. Optimizing the geometric programming problem with single-term exponents subject to max-min fuzzy relational equation constraints. Mathematical and Computer Modelling 47: 352-362.

Yuelin, G., Chengxian, X., Yanjun, W. & Lianshen, Z. 2005. A new two-level linear relaxed bound method for geometric programming problems. Applied Mathematics and Computation 164: 117-131.

 

 

*Corresponding author; email: msaraj@scu.ac.ir

 

 

 

previous