Sains Malaysiana 44(10)(2015): 1377–1388
A
Finite Element Model to Predict Wellbore Fracture Pressure with
Acid Damage
(Model
Unsur Terhingga untuk Meramalkan Retak Tekanan Telaga Gerudi dengan
Kerosakan Asid)
FANHUI-ZENG*, JIANCHUN-GUO
& YUXUAN-LIU
State Key Laboratory of
Oil and Gas Geology and Exploration, Southwest Petroleum University, 610500
Chengdu, P.R. China
Received: 13 June 2013/Accepted:
4 August 2015
ABSTRACT
Hydraulic fracturing becomes more difficult
when confronted with a formation of high fracturing pressure. In
such formations, acidizing before the main fracturing treatment
provide a method to reduce fracture pressure. The aim of this paper
was to investigate the evolution of fracture pressure in a wellbore
with acidizing. Five experiments were conducted to study the mechanisms
of acid damage on reservoir minerals and cementing materials properties.
Consequently, a mathematical model to predict fracture pressure
with acidizing has been established and verified by field data.
The analysis results showed that it is possible to reduce fracture
pressure with decreased rock strength and fracture critical stress
intensity factor by means of acid damage. Acid damage destroys the
crystal structure of mineral particles, breaks the crystalline layers
in cementing materials, increases rock porosity and reduces the
rock strength. In addition, as the acid concentration, formation
temperature and acid treatment time increased, it was useful to
reduce fracture pressure in the wellbore. Using the proposed model,
we were able to select the optimal acid damage construction parameters
to reduce fracture pressure.
Keywords: Acid damage; fracture
pressure; hydraulic fracture; mechanisms of acid damage; prediction model
ABSTRAK
Keretakan hidraulik
menjadi sukar apabila berhadapan dengan pembentukan tekanan keretakan
tinggi. Dalam pembentukan itu, pengasidan sebelum rawatan
keretakan utama merupakan suatu kaedah bagi mengurangkan tekanan
retak. Tujuan kajian ini adalah untuk
mengkaji evolusi tekanan retak dalam telaga gerudi dengan pengasidan.
Lima kajian telah dijalankan untuk mengkaji
mekanisme kerosakan asid dalam tangki mineral dan sifat bahan penyimenan.
Oleh yang demikian, model matematik untuk meramalkan
tekanan retak dengan pengasidan telah dibangun dan dibuktikan melalui
data lapangan. Keputusan analisis menunjukkan
bahawa tekanan retak dapat dikurangkan dengan mengurangkan kekuatan
batu dan faktor keamatan tekanan kritikal retak melalui kerosakan
asid. Kerosakan asid memusnahkan struktur kristal
zarah mineral, memecahkan lapisan kristal dalam bahan penyimenan,
meningkatkan keliangan batu dan mengurangkan kekuatan batu. Sebagai
tambahan, semasa kepekatan asid, suhu pembentukan dan tempoh rawatan
asid meningkat, adalah disarankan tekanan retak dikurangkan dalam
telaga gerudi. Berdasarkan model yang dicadangkan, kami dapat memilih parameter
penghasilan kerosakan asid yang optimum untuk mengurangkan tekanan
retak.
Kata kunci: Kerosakan asid; mekanisme kerosakan asid; model
ramalan; retak hidraulik; tekanan retak
REFERENCES
Anderson,
R.A., Ingram, D.S. & Zanier, A.M. 1973. Determining fracture
pressure gradients from well logs. Journal of Petroleum Technology 25:
1259-1268.
Asadpourea,
A., Mohammadib, S. & Vafaia, A. 2006. Modeling crack in
orthotropic media using a coupled finite element and partition of unity
methods. Finite Elements in Analysis and Design 42: 1165-1175.
Atkinson, B.K. 1979. A
fracture mechanics study of subcritical tensile cracking of quartz in wet
environments. Pure and Applied Geophysics 117: 1011-1024.
Colback, P.S.B. &
Wild, B.L. 1965. The influence of moisture content on the
compressive strength of rock. Proceedings of the
3rd Canadian Rock Mechanics Symposium. pp. 65-83.
Chen,
Z.X., Mian, C. & Yan, J. 1997. Determination of rock fracture toughness with
hydraulic fracturing method. Chinese Journal of Rock Mechanics and
Engineering 16: 59-62.
Ding, W.X. & Feng,
X.T. 2005. Study on chemical damage effect and quantitative analysis method of
meso-structure of limestone. Chinese Journal of Rock Mechanics and
Engineering 24: 1283-1288.
Eaton, B.A. 1969.
Fracture gradient prediction and its application in oilfield operations. SPE
Journal of Petroleum Technology 21(10): 1353-1360.
Feng, X.T., Chen, S.
& Li, S. 2001. Effects of water chemistry on micro
cracking and compressive strength of granite. International Journal
of Rock Mechanics & Mining Sciences 38: 557-568.
Fogler, H.S. 1975. Acidization II-the kinetics of the dissolution of sodium and
postassium feldspar in HF/HCl acid mixtures. Chemical Engineering
Science 30: 1325-1322.
Freiman, S.W. 1984. Effects of chemical environments on slow crack growth in glasses
and ceramics. Journal of Geophysical Research 89: 4072-4076.
Haimson, B. &
Fairhurst, C. 1967. Initiation and extension of hydraulic
fractures in rocks. Old SPE Journal 7: 310-318.
Hawkins, A.B. &
McConnell, B.J. 1992. Sensitivity of sandstone strength and
deformability to changes in moisture content. Quarterly Journal of
Engineering Geology 25: 115-130.
Higgs,
N. 1981. Mechanical Properties of Ultrafine Quartz, Chlorite,
Bentonite in Environments of the Upper Crust. Ph.D.
dissertation, Texas A & M University, College Station, TX. (Unpublished).
Hill, A.D. 1981.
Theoretical and experimental studies of sandstone acidizing. SPEJ 21:
30-42.
Hoshino, K. 1974. Effect of porosity on the strength of the classic sedimentary
rocks. Proceedings, Congress of the International
Society for Rock Mechanics. Advances in Rock Mechanics, Reports of
Current Research, Part A. U. S. Committee on Rock Mechanics, National Academy
of Sciences, Washington, D.C. 2: 511-516.
Hossain, M.M., Rahman,
M.K. & Sheik, S.R. 1999. A comprehensive monograph for
hydraulic fracture initiation from deviated wellbores under arbitrary stress regimes. SPE Asia Pacific Oil and Gas Conference and Exhibition, 20-22 April,
Jakarta, Indonesia.
Huang, R.Z. & Xu,
J.J. 1986. A new method to predict fracture pressure. Oil
Drilling & Production Technology 3: 1-14.
Hu, Y., Zhao, J., Zeng,
Q., Xu, S. & Xie, H. 2003. Finite element method to calculate fracturing
pressure of perforated well hydrofrac. Natural Gas Industry 23: 58-59.
Kline, W.E. &
Fogler, H.S. 1981. Dissolution kinetics: The nature of the particle attack of
layered silicates in HF. Chemical Engineering Science 36: 871-879.
Kronenberg, A.K. 1994. Hydrogen speciation and chemical weakening of quartz. In Silica:
Physical Behavior, Geochemistry and Materials Applications, edited by
Heaney, P.J., Prewitt, C.T. & Gibbs, G.V. Mineralogical Society of
America 29: 123-176.
Lemaitre, J. 1972.
Evaluation of dissipation and damage in metals submitted to dynamic loading,
mechanical behavior of materials. Proceedings of the First International
Conference, Kyoto, Japan. pp. 540-549.
Niemeijer, A.R. & Lloyd, G.E. 2010.
The nature and importance of phyllonite development in crustal-scale fault
cores: An example from the Median Tectonic Line, Japan. Journal of
Structural Geology 28: 220-235.
Rajesh, K.N. & Rao, B.N. 2010. Two-dimensional
analysis of anisotropic crack problems using coupled mesh less and fractal
finite element method. International Journal of Fracture 164:
285-318.
Sibson, R.H. 1977. Fault
rocks and fault mechanisms. Journal of the Geological Society of London 133:
140-213.
Stephen, R.D. 1982.
Prediction of fracture pressures for wildcat wells. Journal of Petroleum
Technology 34: 863-872.
Tang,
L.S., Peng, C.Z. & Si, J.W. 2002. Testing study on effects of
chemical action on crack propagation in rock. Chinese Journal of Rock
Mechanics and Engineering 6: 822-827.
Wiederhorn, S.M. &
Johnson, H. 1973. Effect of electrolyte pH on crack
propagation in glass. Journal of the American Ceramic Society 56:
192-197.
William,
E., Kline, H. & Scott, F. 1981. Dissolution of silicate minerals
by hydrofluoric acid. Industrial & Engineering Chemistry
Fundamentals 20: 155-161.
*Corresponding author, email: zengfanhui023024@126.com
|