Sains Malaysiana 44(10)(2015): 1511–1519

 

Evaluation of Bayesian Model and MCMC Validity in Verification of Piecewise Smooth Signature

(Penilaian Model Bayesian dan Kesahihan MCMC dalam Mengesahkan Kelicinan Tandatangan Cebis demi Cebis)

 

M. BEHBOUDI1*, E. PASHA2 & K. SHAFIE3

 

1Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran

Iran

 

2Department of Mathematics and Computer Science, Kharazmi University, Karaj

Iran

 

3Department of Applied Statistics and Research Methods, College of Education & Behavioral Sciences, University of Northern Colorado, Greeley, 80639 Colorado, USA

 

Received: 5 June 2013/Accepted: 15 June 2015

 

ABSTRACT

McKeague offered a new method for verification of off-line signature based on Bayesian Model and Markov Chain Monte Carlo (MCMC), in which smoothness of the signature curve seems a necessity (it should have no singular point), but when a signature is piecewise smooth, can we use this method for verification of this signature? If yes, how can we use that? And is this method appropriate for piecewise-smooth signatures too? In the current article, we give an idea for verification of a piecewise smooth signature based on McKeague's method. We suggest to separate the smooth segments from singular points and then each segment is verified by McKeague's method independently. Finally, according to the result from smooth segments, we determine the correctness of this signature. Then we will check the validity of this idea with computing errors via simulation.

 

Keywords: Biometric identification; functional data analysis; spatial point process; time warping

 

ABSTRAK

McKeague menawarkan satu kaedah baru untuk pengesahan tandatangan luar talian berdasarkan Model Bayesian dan Rantai Markov Monte Carlo (MCMC) dengan kelancaran lengkung tandatangan seolah-olah satu keperluan (ia tidak seharusnya mempunyai titik tunggal), tetapi apabila kelicinan tandatangan cebis demi cebis, bolehkah kita gunakan kaedah ini untuk pengesahan tandatangan ini? Jika ya, bagaimana boleh kita menggunakannya? Adakah kaedah ini juga sesuai untuk kelicinan tandatangan cebis demi cebis? Dalam kajian ini, kami memberikan idea untuk pengesahan kelicinan tandatangan cebis demi cebis berdasarkan kaedah McKeague. Kami cadangkan supaya segmen kelicinan dipisahkan daripada titik tunggal dan setiap segmen kemudiannya disahkan melalui kaedah McKeague secara berasingan. Kesimpulannya, berdasarkan hasil daripada segmen kelicinan, kami menentukan ketepatan tandatangan ini. Kemudian kami akan menyemak kesahihan idea ini dengan kesilapan pengkomputeran melalui simulasi.

 

Kata kunci: Analisis data fungsi; masa meleding; pengenalan biometrik; proses titik reruang

REFERENCES

do. Carmo, M.P. 1976. Differential Geometry of Curves and Surfaces. New York: Prentice-Hall.

Fang, B., Leung, C.H., Tang, Y.Y., Tse, K.W., Kwok, P.C.K. & Wong, Y.K. 2003. Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition 36: 91-101.

Geyer, C.J. & Møller, J. 1994. Simulation and likelihood inference for spatial point processes. Scandinavian Journal of Statistics 21: 359-373.

Hastie, T.J., Kishon, E., Clark, M. & Fan, J. 1991. A model for signature verification. Proceedings of the IEEE Conference on Systems. Man, and Cybernetics 1: 191-196.

Kalera, M.K., Zhang, B. & Sriahri, S.N. 2003. Offline signature verification and identification using distance statistics. Proc. of the Int. Graphonomics society Conference. pp. 228-232.

Matsuura, T. & Sakai, H. 1996. On stochastic system representation of handwriting process and its application to signature verification. Third International Conference on Signal Processing Proceedings. pp. 1330-1333.

Mckeague, I. 2005. A statistical model for signature verification. American Statistical Association 100: 231-241.

NtZoufras, I. 2009. Bayesian Modeling Using WinBUGS.New York: John Wiley and Sons.

Plamondon, R. & Srihari, S.N. 2000. On-line and off-line handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern REcognition and Machine Intelligence 22(1): 63-84.

Ramsay, J.O. 2000. Functional components of variation in handwriting. Journal of the American Statistical Association 95: 9-15.

Ramsay, J.O. & Silverman, B.W. 1997. Functional Data Analysis.New York: Springer.

Sansone, C. & Vento, M. 2000. Signature verification: Increasing performance by a multi-stage system. Pattern Analysis & Applications 3: 169-181.

Srihari, S.N., Kuzhinjedathu, K., Srinivasan, H., Huang, C. & Pu, D. 2008. Signature verification using a Bayesian approach. Lecture Notes in Computer Science 5158: 192-203.

Srihari, S.N., Xu, A. & Kalera, M.K. 2004. Learning strategies and classification methods for off-line signature verification. Proc.of the 7th Int. Workshop on Frontiers in handwriting recognition (IWFHR). pp. 161-166.

van Lieshout, M.N.M. 2000. Markov Point Processes and their Applications. London: Imperial College Press.

 

 

*Corresponding author; email: m.behboudi@srbiau.ac.ir

 

 

 

 

previous