Sains Malaysiana 44(10)(2015): 1511–1519
Evaluation
of Bayesian Model and MCMC Validity in Verification of Piecewise Smooth
Signature
(Penilaian
Model Bayesian dan Kesahihan MCMC dalam Mengesahkan Kelicinan Tandatangan Cebis
demi Cebis)
M. BEHBOUDI1*, E. PASHA2 & K. SHAFIE3
1Department of Statistics,
Science and Research Branch, Islamic Azad University, Tehran
Iran
2Department of Mathematics and
Computer Science, Kharazmi University, Karaj
Iran
3Department of Applied
Statistics and Research Methods, College of Education & Behavioral Sciences,
University of Northern Colorado, Greeley, 80639 Colorado, USA
Received: 5 June 2013/Accepted:
15 June 2015
ABSTRACT
McKeague offered a new method for verification
of off-line signature based on Bayesian Model and Markov Chain Monte
Carlo (MCMC), in which smoothness of the signature curve seems
a necessity (it should have no singular point), but when a signature
is piecewise smooth, can we use this method for verification of
this signature? If yes, how can we use that? And is this method
appropriate for piecewise-smooth signatures too? In the current
article, we give an idea for verification of a piecewise smooth
signature based on McKeague's method. We suggest to
separate the smooth segments from singular points and then
each segment is verified by McKeague's method independently. Finally,
according to the result from smooth segments, we determine the correctness
of this signature. Then we will check the validity of this idea
with computing errors via simulation.
Keywords: Biometric identification;
functional data analysis; spatial point process; time warping
ABSTRAK
McKeague menawarkan satu kaedah baru
untuk pengesahan tandatangan luar talian berdasarkan Model Bayesian dan Rantai
Markov Monte Carlo (MCMC) dengan kelancaran lengkung
tandatangan seolah-olah satu keperluan (ia tidak seharusnya mempunyai titik
tunggal), tetapi apabila kelicinan tandatangan cebis demi cebis, bolehkah kita
gunakan kaedah ini untuk pengesahan tandatangan ini? Jika ya,
bagaimana boleh kita menggunakannya? Adakah kaedah ini
juga sesuai untuk kelicinan tandatangan cebis demi cebis? Dalam kajian ini, kami memberikan idea untuk pengesahan kelicinan
tandatangan cebis demi cebis berdasarkan kaedah McKeague. Kami cadangkan supaya segmen kelicinan dipisahkan daripada titik
tunggal dan setiap segmen kemudiannya disahkan melalui kaedah McKeague secara
berasingan. Kesimpulannya, berdasarkan hasil daripada
segmen kelicinan, kami menentukan ketepatan tandatangan ini. Kemudian
kami akan menyemak kesahihan idea ini dengan kesilapan
pengkomputeran melalui simulasi.
Kata
kunci: Analisis data fungsi; masa meleding; pengenalan biometrik; proses titik
reruang
REFERENCES
do. Carmo, M.P. 1976. Differential Geometry of Curves and Surfaces. New
York: Prentice-Hall.
Fang, B., Leung, C.H., Tang,
Y.Y., Tse, K.W., Kwok, P.C.K. & Wong, Y.K. 2003. Off-line signature verification by the tracking of feature and
stroke positions. Pattern Recognition 36: 91-101.
Geyer, C.J. & Møller, J.
1994. Simulation and likelihood inference for spatial point processes. Scandinavian
Journal of Statistics 21: 359-373.
Hastie,
T.J., Kishon, E., Clark, M. & Fan, J. 1991. A model
for signature verification. Proceedings of the IEEE
Conference on Systems. Man, and Cybernetics 1: 191-196.
Kalera, M.K., Zhang, B. &
Sriahri, S.N. 2003. Offline signature verification and identification
using distance statistics. Proc. of the Int. Graphonomics
society Conference. pp. 228-232.
Matsuura, T. & Sakai, H.
1996. On stochastic system representation of handwriting
process and its application to signature verification. Third International Conference on Signal Processing Proceedings. pp. 1330-1333.
Mckeague, I. 2005. A statistical model for signature verification. American Statistical Association 100: 231-241.
NtZoufras, I. 2009. Bayesian Modeling Using WinBUGS.New York: John Wiley
and Sons.
Plamondon, R. & Srihari,
S.N. 2000. On-line and off-line handwriting recognition: A comprehensive
survey. IEEE Transactions on Pattern REcognition and Machine Intelligence 22(1):
63-84.
Ramsay, J.O. 2000. Functional components of variation in handwriting. Journal
of the American Statistical Association 95: 9-15.
Ramsay, J.O. & Silverman,
B.W. 1997. Functional Data Analysis.New York:
Springer.
Sansone, C.
& Vento, M. 2000. Signature verification: Increasing performance by a multi-stage
system. Pattern Analysis & Applications 3: 169-181.
Srihari, S.N., Kuzhinjedathu,
K., Srinivasan, H., Huang, C. & Pu, D. 2008. Signature
verification using a Bayesian approach. Lecture Notes in
Computer Science 5158: 192-203.
Srihari, S.N., Xu, A. &
Kalera, M.K. 2004. Learning strategies and classification methods for off-line
signature verification. Proc.of the 7th Int. Workshop on Frontiers in
handwriting recognition (IWFHR). pp. 161-166.
van Lieshout, M.N.M. 2000.
Markov Point Processes and their Applications. London:
Imperial College Press.
*Corresponding author;
email: m.behboudi@srbiau.ac.ir
|