Sains Malaysiana 44(11)(2015): 1541–1550
Study on the Preparation of Cellulose Nanofibre (CNF) from
Kenaf Bast Fibre for Enzyme Immobilization
Application
(Kajian terhadap Penyediaan Nano-gentian Selulosa (CNF) daripada Gentian Kulit Kenaf untuk Aplikasi Pemegunan Enzim)
SAFWAN SULAIMAN1, MOHD NORIZNAN MOKHTAR1*, MOHD NAZLI NAIM1, AZHARI SAMSU BAHARUDDIN1, MOHAMAD AMRAN MOHD SALLEH2 & ALAWI SULAIMAN3
1Department of Process
and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
2Department of Chemical
and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Faculty of Plantation
and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor Darul Ehsan, Malaysia
Received: 28 March
2015/Accepted: 12 June 2015
ABSTRACT
This paper discussed
on the preparation of natural CNF from kenaf bast fibre for the
application as a support structure in enzyme immobilization. The treatments
involved for this preparation were delignification, bleaching and
high-intensity ultra-sonication process to obtain nanofibre with high cellulose content and less than 100 nm diameter.
Chemical composition analysis showed the influence of each process treatment on
cellulose content of raw bast fibre,
bleached pulp fibre and CNF(63.67,
81.12 and 91.97%, respectively). By increasing the cellulose content and
decreasing the size of cellulose fibre, it resulted
in a greater number of –OH functional group on its surface that plays as
important role in enzyme immobilization. FTIR spectroscopy confirms that
the removal of lignin and hemicellulose from the fibre after the treatments, as well as its interaction with coupling agents and CGTase enzyme. About 62.10% of enzyme loading and
45.62% of its activity yield were obtained after immobilization. Enzymatic
reaction of immobilized CGTase on CNF indicates about more than 60% relative production
yield of α-CD was achieved and its reusability
was able to retain about 67.0% from its initial activity after 8 cycles of
reaction. Therefore, the CNF is a good potential as a support
for enzyme immobilization.
Keywords: Cellulose nanofibre (CNF); covalent immobilization; cyclodextrin glucanotransferase (CGTase); kenaf
ABSTRAK
Kertas ini membincangkan penyediaan CNF
semula jadi daripada serabut kulit kenaf untuk aplikasi
sebagai struktur sokongan dalam pemegunan enzim. Rawatan yang terlibat dalam penyediaan ini ialah delignasi, pelunturan
dan proses ultrasonikasi berkeamatan tinggi untuk memperoleh nano-serabut dengan kandungan selulosa yang tinggi dan berdiameter kurang daripada
100 nm. Analisis komposisi kimia menunjukkan kesan akibat daripada
proses rawatan terhadap kandungan selulosa pada serabut kulit mentah, serabut pulpa terluntur dan CNF (masing-masing adalah 63.67, 81.12
dan 91.97%). Dengan peningkatan kandungan selulosa dan pengurangan
saiz serabut selulosa, ia menghasilkan lebih banyak
kumpulan berfungsi –OH pada permukaannya yang memainkan peranan
penting dalam pemegunan enzim. FTIR spektroskopi mengesahkan penyingkiran
lignin dan hemiselulosa daripada serabut selepas proses rawatan tersebut serta interaksinya dengan agen perhubungan
dan enzim CGTase.
Sebanyak 62.10% muatan enzim dan 45.62% hasilan
aktiviti diperoleh selepas pemegunan. Tindak balas enzim
CGTase
terpegun pada CNF menunjukkan lebih daripada 60% hasil pengeluaran relatif
α-CD dicapai dan penggunaan semulanya dapat mengekalkan sebanyak
67.0% daripada aktiviti awal selepas 8 kitaran tindak balas. Oleh itu, CNF berpotensi baik sebagai penyokong
untuk pemegunan enzim.
Kata kunci: Kenaf; nano-serabut
selulosa (CNF); pemegunan kovalen; siklodekrin glukanotransferase
(CGTase)
REFERENCES
Abdel-Naby, M.A. 1999. Immobilization of Paenibacillus maceransNRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme. Process Biochem. 34(4):
399-405.
Abdel-Naby, M.A., Ismail, A.M.S., Abdel-Fattah, A.M. & Abdel-Fattah,
A.F. 1999. Preparation and some properties of immobilized Penicillium funiculosum 258 dextranase. Process Biochem. 34(4): 391-398.
Abe,
K. & Yano, H. 2009. Comparison of the characteristics of
cellulose microfibril aggregates of wood, rice straw and
potato tuber. Cellulose 16(6): 1017-1023.
Brinchi,
L., Cotana, F., Fortunati,
E. & Kenny, J.M. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr. Polym. 94(1): 154-169.
Cao,
L. 2006. Covalent enzyme immobilization. Carrier-bound
Immobilized Enzymes. KGaA: Wiley-VCH Verlag GmbH & Co. pp. 169-316.
Chen,
W., Yu, H. & Liu, Y. 2011a. Preparation of
millimeter-long cellulose I nanofibers with diameters of 30-80nm from bamboo
fibers. Carbohyd. Polym.86(2): 453-461.
Chen,
W., Yu, H., Liu, Y., Chen, P., Zhang, M. & Hai, Y. 2011b. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd. Polym. 83(4): 1804-1811.
Ferrarotti,
S.A., Bolivar, J.M., Mateo, C., Wilson, L., Guisan,
J.M. & Fernandez-Lafuente, R. 2006. Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated Glyoxyl-Agarose supports. Biotechnol. Progr. 22(4): 1140-1145.
Ivanova,
V. 2010. Immobilization of cyclodextrin glucanotransferase from Paenibacillus macerans ATCC 8244 on magnetic carriers and production of cyclodextrins. Biotechnol. Biotec. Eq. 24(supp 1): 516-528.
Joonobi,
M., Harun, J., Tahir, P.M., Zaini, L.H., Saiful Azry, S. & Makinejad, M.D. 2010. Characteristics
of nanofibres extracted from kenaf core. BioResources 5(4): 2556-2566.
Jonoobi,
M., Niska, K.O., Harun, J., Misra, M., Shakeri, A., Misra, M. & Oksman, K. 2009. Chemical composition, crystallinity, and thermal degradation of
bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2): 626-639.
Karimi,
S., Tahir, P.M., Karimi, A., Dufresne, A. & Abdulkhani, A. 2014. Kenaf bast cellulosic fibers hierarchy:
A comprehensive approach from micro to nano. Carbohyd. Polym. 101(0): 878-885.
Khalil,
H.P.S.A., Ismail, H., Rozman, H.D. & Ahmad, M.N.
2001. The effect of acetylation on interfacial shear strength
between plant fibres and various matrices. Eur. Polym. J. 37(5): 1037-1045.
Kim,
J., Grate, J.W. & Wang, P. 2006. Nanostructures for
enzyme stabilization. Chem. Eng. Sci. 61(3): 1017-1026.
Le Troedec, M., Sedan, D., Peyratout,
C., Bonnet, J.P., Smith, A., Guinebretiere, R., Gloaguen, V. & Krausz, P.
2008. Influence of various chemical treatments on the composition and structure
of hemp fibres. Compos. Part A-Appl. S. 39(3): 514-522.
Li,
Y., Mai, Y-W. & Ye, L. 2000. Sisal fibre and its composites: A review of recent developments. Compos. Sci. Technol. 60(11): 2037-2055.
Martı́n,
M.T., Plou, F.J., Alcalde,
M. & Ballesteros, A. 2003. Immobilization
on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the
immobilized biocatalyst. J. Mol. Catal. B: Enzym. 21(4-6): 299-308.
Matte,
C.R., Nunes, M.R., Benvenutti,
E.V., Schöffer, J.D.N., Ayub,
M.A.Z. & Hertz, P.F. 2012. Characterization of cyclodextrin glycosyltransferase immobilized on silica
microspheres via aminopropyltrimethoxysilane as a
“spacer arm.” J. Mol. Catal. B: Enzym. 78(0): 51-56.
Mubarak,
N.M., Wong, J.R., Tan, K.W., Sahu, J.N., Abdullah,
E.C., Jayakumar, N.S. & Ganesan, P. 2014.
Immobilization of cellulase enzyme on functionalized
multiwall carbon nanotubes. J. Mol. Catal. B: Enzym. 107: 124-131.
Nacos,
M.K., Katapodis, P., Pappas, C., Daferera,
D., Tarantilis, P.A., Christakopoulos,
P. & Polissiou, M. 2006. Kenaf xylan - A source of biologically active acidic
oligosaccharides. Carbohyd. Polym.66(1): 126-134.
Ortega,
N., Perez-Mateos, M., Pilar, M.C. & Busto, M.D.
2009. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J.
Agric. Food. Chem. 57(1): 109-115.
Prousoontorn,
M.H. & Pantatan, S. 2007. Production of
2-O-α-glucopyranosyl l-ascorbic acid from
ascorbic acid and β-cyclodextrin using
immobilized cyclodextrin glycosyltransferase. J.
Inclusion Phenom. Macrocyclic Chem. 57(1-4): 39-46.
Redeker,
E.S., Ta, D.T., Cortens, D., Billen,
B., Guedens, W. & Adriaensens,
P. 2013. Protein engineering for directed immobilization. Bioconjugate Chem. 24(11): 1761-1777.
Schöffer,
J.D.N., Klein, M.P., Rodrigues, R.C. & Hertz, P.F. 2013. Continuous
production of β-cyclodextrin from starch by
highly stable cyclodextrin glycosyltransferase
immobilized on chitosan. Carbohydr. Polym.98(2): 1311-1316.
Shahrazi,
S., Saallah, S., Mokhtar, M.N., Baharuddin,
A.S. & Yunos, K.F.M. 2013. Dynamic mathematical
modelling of reaction kinetics for cyclodextrins production from different starch sources using Bacillus macerans cyclodextrin glucanotransferase. Am. J. Biochem. Biotechnol.9(2): 195-
205.
Silva, M.C., Lopes,
O.R., Colodette, J.L., Porto, A.O., Rieumont, J., Chaussy, D., Belgacem, M.N. & Silva, G.G. 2008. Characterization
of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of
cellulose fibres. Ind.
Crop Prod. 27(3): 288-295.
Siró, I.
& Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3):
459-494.
Sulaiman,
S., Mokhtar, M.N., Naim, M.N., Baharuddin,
A.S. & Sulaiman, A. 2014. A review: Potential
usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent
interactions. Appl. Biochem. Biotechnol.175(4):
1817-1842.
Svensson, D. & Adlercreutz, P. 2011. Immobilisation of CGTase for continuous production of
long-carbohydrate-chain alkyl glycosides: Control of product distribution by
flow rate adjustment. J. Mol. Catal. B: Enzym. 69(3-4): 147-153.
van Soest,
P.J., Robertson, J.B. & Lewis, B.A. 1991. Methods for
dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10):
3583-3597.
Wang,
H-Y., Chen, Y-Y. & Zhang, Y-Q. 2015. Processing and characterization of powdered silk micro-
and nanofibers by ultrasonication. Mater. Sci. Eng. C 48: 444-452.
Zhao,
H-P., Feng, X-Q. & Gao, H. 2007. Ultrasonic
technique for extracting nanofibers from nature materials. Appl.
Phys. Lett. 90: 073112.
*Corresponding
author; email: noriznan@upm.edu.my
|