Sains Malaysiana 44(11)(2015): 1551–1559

 

Preparation of Durian Skin Nanofibre (DSNF) and Its Effect on the Properties of Polylactic Acid (PLA) Biocomposites

(Penyediaan Nano-serabut Kulit Durian (DSNF) dan Kesannya ke atas Sifat Biokomposit Asid Polilaktik (PLA))

 

M.N. NUR AIMI1*, H. ANUAR1, M. MAIZIRWAN2, S.M. SAPUAN3, M.U. WAHIT4

& S. ZAKARIA5

 

1Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

2Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

3Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Center for Composites, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

5Materials Science Programme, School of Applied Physics, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 March 2015/Accepted: 22 June 2015

 

 

ABSTRACT

Biological fermentation of Rhizopus oryzae was introduced to extract cellulose nanofibre from durian skin fibre (DSF). The diameter of the extracted durian skin nanofibre (DSNF) was in the range of 49-81 nm. The changes of chemical composition of DSNF were clearly seen after evaluated via TAPPI standard test methods. Verification via Fourier transform infrared (FTIR) confirmed the deduction of hemicelluloses and lignin in DSNF in the range of 1200 to 1000 cm-1. X-ray diffraction (XRD) demonstrated increment in the crystallinity from 58.3 to 72.2% after biological fermentation. DSNF was then incorporated into polylactic acid (PLA) via extrusion and injection moulding processes. The effect of 1-5 wt. % DSNF content on PLA biocomposites was investigated for its mechanical and thermal properties. The presence of only 1 wt. % improved the tensile and impact strength by 14.1 MPa and 33.1 kJ/m2, respectively. The thermal properties of PLA-1DSNF biocomposite also recorded higher thermal stability, glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm). Additionally, from the DMA, it was determined that PLA-1DSNF possessed lower storage modulus and loss modulus, as well as low energy dissipation.

 

Keywords: Biocomposites; durian skin fibre; durian skin nanofiber; polylactic acid

 

ABSTRAK

Fermentasi biologi Rhizopus oryzae telah diperkenalkan bagi mengekstrak nano-serabut selulosa daripada serabut kulit durian (DSF). Diameter nano-serabut kulit durian (DSNF) adalah dalam julat 49-81 nm. Ujian piawaian kaedah TAPPI menunjukkan perubahan komposisi kimia DSNF. Pengesahan melalui transformasi Fourier inframerah (FTIR) menunjukkan pengurangan hemiselulosa dan lignin sekitar 1200 hingga 1000 cm-1. Pembelauan sinar-X (XRD) menunjukkan peningkatan hablur daripada 58.3 kepada 72.2% selepas fermentasi biologi. Seterusnya, DSNF telah ditambahkan kepada asid polilaktik (PLA) melalui pemprosesan secara penyemperitan dan pengacuanan suntikan. Kesan kemasukan DSNF daripada 1-5 wt. % ke atas sifat mekanik dan terma biokomposit PLA telah dikaji. Kehadiran DSNF serendah 1 wt. % memperbaiki kekuatan regangan dan hentaman, masing-masing sebanyak 14.1 MPa dan 33.1 kJ/m2. Sifat terma bio komposit PLA-1DSNF juga merekodkan kestabilan terma, suhu peralihan kaca (Tg), suhu penghabluran (Tc) dan suhu peleburan (Tm) yang lebih tinggi. Analisis daripada DMA menunjukkan PLA-1DSNF mempunyai modulus simpanan dan kehilangan yang lebih rendah, juga kehilangan tenaga yang rendah.

 

Kata kunci: Asid polilaktik; biokomposit; nano-serabut kulit durian; serabut kulit durian

REFERENCES

 

 

Albert, S., Padhiar, A. & Gandhi, D. 2011. Fiber properties of Sorghum halepenseand its suitability for paper production. J. Natural Fibers 8: 263-271.

Atta, H.M. & Yassen, A.M. 2014. Phylogenetic characterization, fermentation and biological activities of an antibiotic producing Streptomyces clavuligerus isolated from KSA. Int. J. Curr. Microbiol. App. Sci. 3(12): 519-534.

Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M. & Chen, P. 2011. Isolation and characterization of nanofibers from four plant cellulose fibers using chemical ultrasonic process. Cellulose 18: 433-442.

Damadzadeh, B., Jabari, H., Skrifvars, M., Airola, K., Moritz, N. & Vallitu, P.K. 2010. Effect of ceramic filler content on thermal and mechanical behaviour of poly-L-Lactic and poly- L-lactic-co-glycolic acid composites for medical applications. Journal of Materials Science 21: 2523-2531.

Dasong, D. & Mizi, F. 2010. Characteristics and performance of elementary hemp fiber. Materials Sciences and Applications 1: 336-345.

Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R. & Rowan, S.J. 2010. Review: Current international research into cellulose nanofibers and nanocomposites. Mater. Science 45: 1-33.

Ho, M., Wang, H., Lee, J.H., Ho, C.K., Lau, K., Leng, J. & Hui, D. 2012. Critical factors on manufacturing processes of natural fibre composites. Composites Part B 43: 3549-3562.

Ibrahim, M.M., Dufresne, A., El-Zawawya, W.K. & Aglebor, F.A. 2010. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers 81: 811-819.

Isroi, Ria Millati, Siti Syamsiah, Claes Niklasson, Muhammad Nur Cahyanto, Knut Lundquist & Mohammad J. Taherzadeh. 2011. Biological pre-treatment of lignocelluloses with white rot fungi and its applications: A review. Bioresources 6(4): 5224-5259.

Janardhnan, S. & Sain, M. 2011. Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for isolation of cellulose nanofibers via enzymatic treatment. Bioresources 6: 1242-1250.

Jonoobi, M., Khazaeian, A., Tahir, P., Azry, S.S. & Oksman, K. 2011. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18: 1085-1095.

Kaiser, M.R., Anuar, H., Samat, A.N. & Abdul Razak, S. 2013. Effect of processing route on mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iranian Polymer Journal 22(2): 123-131.

Kazimierczak, J., Bloda, A., Wietecha, J., Ciechanska, D. & Antczak, T. 2012. Research into isolation of cellulose micro and nanofibers from hemp straw using cellulolytic complex from Aspergillus Niger. Fibres & Textiles in Eastern Europe 6B(96): 40-43.

Kumar, P. & Awasthi, S. 2014. Mechanical and thermal modelling of ln-Cu composites for thermal interface materials applications. Journal of Composite Materials 48(11): 1391- 1398.

Mamun, A.A. & Bledzki, A.K. 2013. Micro fibre reinforced PLA and PP composites: Enzyme modification, mechanical and thermal properties. Composites Science and Technology 78: 10-17.

Manshor, M.R., Anuar, H., Nur Aimi, M.N., Ahmad Fitrie, M.I., Wan Nazri, W.B., Sapuan, S.M., El-Shekeil, Y.A. & Wahit, M.U. 2014. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials and Design 59: 279-286.

Meng, Q.K., Hetzer, M. & De Kee, D. 2011. PLA/clay/wood nanocomposites: Nanoclay effect on mechanical and thermal properties. Journal of Composite Materials 45(10): 1145- 1158.

Mohammad, N.N.B. & Arsad, A. 2013. Mechanical, thermal and morphological study on kenaf fibre reinforced rpet/ABS composites. Malaysian Polymer Journal 8(1): 8-13.

Ndiaye, D. & Tidjani, A. 2012. Effects of coupling agents on thermal behaviour and mechanical properties of wood flour/ polypropylene composites. Journal of Composites Materials 46(24): 3067-3075.

Nur Aimi, N., Anuar, H., Manshor, M.R., Wan Nazri, W.B. & Sapuan, S.M. 2014. Optimizing the parameters in durian skin fiber reinforced polypropylene composites by response surface methodology. Industrial Crops and Products 54: 291-295.

Nur Aimi, M.N., Mohd Adlan, M.K., Nurhafizah, S.M., Anuar, H., Mel, M. & Othman, R. 2011. Effect of Rhizopus Oryzaefermentation on kenaf based polylactic acid’s monomer. IIUM Engineering Journal (Special Issue on Biotechnology) 12(4): 83-87.

Sahan, Y. 2011. Effect of Prunus lauroceranusL. (Chery Laurel), leaf extracts on bread spoilage fungi. Bulgarian Journal of Agriculture Science 17(1): 83-92.

Segal, L., Creely, J.J., Martin Jr., A.E. & Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29: 786-794.

Shahzad, A. 2011. Hemp fibre and its composites - A review. Journal of Composite Materials 46(8): 973-986.

Siqueira, G., Bras, J. & Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymer 2: 728-765.

Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A. & Zaman, H.M.D.K. 2012. Effects of alkali treatments on the tensile properties of pineapple leaf fibre reinforced high impact polystyrene composites. Pertanika Journal of Science and Technology 20(2): 409-414.

Siyamak, S., Ibrahim, N.A., Abdolmohammadi, S., Wan Yunus, W.M.Z. & Rahman, A.B. 2012. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fibre poly(butylenesadipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride. Molecules 17(2): 1969-1991.

Tsukamoto, J., Duran, N. & Tasic, L. 2013. Nanocellulose and bioethanol production from orange waste using isolated microorganisms. Journal of Brazilian Chemical Society 24(9): 1537-1543.

 

*Corresponding author; email: aimi_nasir@ymail.com

 

 

 

previous