Sains Malaysiana 44(11)(2015): 1551–1559
Preparation of Durian
Skin Nanofibre (DSNF) and Its Effect on the Properties of Polylactic Acid (PLA) Biocomposites
(Penyediaan Nano-serabut Kulit Durian (DSNF) dan Kesannya ke
atas Sifat
Biokomposit Asid Polilaktik (PLA))
M.N. NUR AIMI1*, H. ANUAR1, M. MAIZIRWAN2, S.M. SAPUAN3, M.U. WAHIT4
& S. ZAKARIA5
1Department of Manufacturing and
Materials Engineering, Faculty of Engineering, International Islamic University
Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Wilayah Persekutuan, Malaysia
2Department of Biotechnology
Engineering, Faculty of Engineering, International Islamic University Malaysia,
P.O. Box 10, 50728 Kuala Lumpur, Wilayah Persekutuan, Malaysia
3Department
of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
4Center
for Composites, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
5Materials
Science Programme, School of Applied Physics, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received: 28 March 2015/Accepted: 22 June 2015
ABSTRACT
Biological
fermentation of Rhizopus oryzae was introduced to extract
cellulose nanofibre from durian skin fibre (DSF). The diameter of the extracted
durian skin nanofibre (DSNF)
was in the range of 49-81 nm. The changes of chemical composition of DSNF were clearly seen after evaluated via TAPPI standard
test methods. Verification via Fourier transform infrared (FTIR)
confirmed the deduction of hemicelluloses and lignin in DSNF in
the range of 1200 to 1000 cm-1. X-ray diffraction (XRD)
demonstrated increment in the crystallinity from 58.3 to 72.2% after biological
fermentation. DSNF was then incorporated into polylactic acid (PLA) via extrusion and injection moulding processes. The effect of 1-5 wt. % DSNF content on PLA biocomposites was investigated for its mechanical and
thermal properties. The presence of only 1 wt. % improved the tensile and
impact strength by 14.1 MPa and 33.1 kJ/m2,
respectively. The thermal properties of PLA-1DSNF biocomposite also recorded higher thermal stability, glass
transition temperature (Tg),
crystallization temperature (Tc) and melting
temperature (Tm). Additionally, from the DMA,
it was determined that PLA-1DSNF possessed lower storage
modulus and loss modulus, as well as low energy dissipation.
Keywords: Biocomposites; durian skin fibre;
durian skin nanofiber; polylactic acid
ABSTRAK
Fermentasi biologi Rhizopus oryzae telah diperkenalkan bagi mengekstrak nano-serabut
selulosa daripada serabut kulit durian (DSF).
Diameter nano-serabut kulit durian (DSNF)
adalah dalam julat 49-81 nm. Ujian piawaian
kaedah TAPPI
menunjukkan perubahan komposisi kimia DSNF.
Pengesahan melalui transformasi Fourier inframerah
(FTIR)
menunjukkan pengurangan hemiselulosa dan lignin sekitar 1200 hingga
1000 cm-1.
Pembelauan sinar-X (XRD) menunjukkan peningkatan hablur
daripada 58.3 kepada 72.2% selepas fermentasi biologi. Seterusnya, DSNF telah ditambahkan kepada asid polilaktik
(PLA) melalui pemprosesan secara penyemperitan dan pengacuanan
suntikan. Kesan kemasukan DSNF daripada
1-5 wt. % ke atas sifat mekanik dan terma biokomposit PLA telah
dikaji. Kehadiran DSNF serendah
1 wt. % memperbaiki kekuatan regangan dan hentaman, masing-masing
sebanyak 14.1 MPa dan 33.1 kJ/m2. Sifat
terma bio komposit PLA-1DSNF juga merekodkan kestabilan
terma, suhu peralihan kaca (Tg), suhu penghabluran (Tc)
dan suhu peleburan (Tm) yang lebih tinggi. Analisis daripada DMA menunjukkan PLA-1DSNF mempunyai
modulus simpanan dan kehilangan yang lebih rendah, juga kehilangan
tenaga yang rendah.
Kata kunci: Asid
polilaktik; biokomposit;
nano-serabut kulit
durian; serabut kulit durian
REFERENCES
Albert,
S., Padhiar, A. & Gandhi, D. 2011. Fiber properties of Sorghum halepenseand
its suitability for paper production. J. Natural Fibers
8: 263-271.
Atta, H.M. & Yassen, A.M. 2014.
Phylogenetic characterization, fermentation and biological activities
of an antibiotic producing Streptomyces clavuligerus isolated from
KSA. Int. J. Curr. Microbiol. App. Sci. 3(12): 519-534.
Chen,
W., Yu, H., Liu, Y., Hai, Y., Zhang, M. & Chen, P. 2011. Isolation
and characterization of nanofibers from four plant cellulose fibers
using chemical ultrasonic process. Cellulose 18: 433-442.
Damadzadeh,
B., Jabari, H., Skrifvars, M., Airola,
K., Moritz, N. & Vallitu, P.K. 2010. Effect of ceramic filler content on thermal and mechanical behaviour of poly-L-Lactic and poly- L-lactic-co-glycolic
acid composites for medical applications. Journal of Materials Science 21: 2523-2531.
Dasong,
D. & Mizi, F. 2010. Characteristics and performance of elementary hemp fiber. Materials
Sciences and Applications 1: 336-345.
Eichhorn,
S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R.
& Rowan, S.J. 2010. Review: Current international research
into cellulose nanofibers and nanocomposites. Mater.
Science 45: 1-33.
Ho, M., Wang, H., Lee, J.H., Ho, C.K., Lau, K., Leng,
J. & Hui, D. 2012. Critical factors on manufacturing processes
of natural fibre composites. Composites Part B 43: 3549-3562.
Ibrahim, M.M., Dufresne, A., El-Zawawya, W.K. & Aglebor,
F.A. 2010. Banana fibers and microfibrils as lignocellulosic reinforcements
in polymer composites. Carbohydrate Polymers 81: 811-819.
Isroi, Ria Millati, Siti Syamsiah, Claes Niklasson, Muhammad Nur Cahyanto, Knut Lundquist & Mohammad J. Taherzadeh. 2011. Biological pre-treatment of
lignocelluloses with white rot fungi and its applications: A review. Bioresources 6(4): 5224-5259.
Janardhnan,
S. & Sain, M. 2011. Targeted disruption of hydroxyl chemistry and crystallinity in
natural fibers for isolation of cellulose nanofibers via enzymatic treatment. Bioresources 6: 1242-1250.
Jonoobi,
M., Khazaeian, A., Tahir, P., Azry,
S.S. & Oksman, K. 2011. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18: 1085-1095.
Kaiser,
M.R., Anuar, H., Samat,
A.N. & Abdul Razak, S. 2013. Effect
of processing route on mechanical, thermal and morphological properties of
PLA-based hybrid biocomposite. Iranian
Polymer Journal 22(2): 123-131.
Kazimierczak,
J., Bloda, A., Wietecha,
J., Ciechanska, D. & Antczak,
T. 2012. Research into isolation of
cellulose micro and nanofibers from hemp straw using cellulolytic complex from Aspergillus
Niger. Fibres & Textiles in
Eastern Europe 6B(96): 40-43.
Kumar,
P. & Awasthi, S. 2014. Mechanical
and thermal modelling of ln-Cu composites for thermal interface materials
applications. Journal of Composite Materials 48(11): 1391- 1398.
Mamun,
A.A. & Bledzki, A.K. 2013. Micro fibre reinforced PLA and PP composites: Enzyme
modification, mechanical and thermal properties. Composites Science and
Technology 78: 10-17.
Manshor,
M.R., Anuar, H., Nur Aimi,
M.N., Ahmad Fitrie, M.I., Wan Nazri,
W.B., Sapuan, S.M., El-Shekeil,
Y.A. & Wahit, M.U. 2014. Mechanical, thermal and
morphological properties of durian skin fibre reinforced PLA biocomposites. Materials and Design 59: 279-286.
Meng,
Q.K., Hetzer, M. & De Kee,
D. 2011. PLA/clay/wood nanocomposites: Nanoclay effect on mechanical and thermal properties. Journal of Composite Materials 45(10):
1145- 1158.
Mohammad,
N.N.B. & Arsad, A. 2013. Mechanical, thermal and morphological study on kenaf fibre reinforced rpet/ABS
composites. Malaysian Polymer Journal 8(1): 8-13.
Ndiaye,
D. & Tidjani, A. 2012. Effects of coupling agents on thermal behaviour and
mechanical properties of wood flour/ polypropylene composites. Journal of
Composites Materials 46(24): 3067-3075.
Nur Aimi, N., Anuar, H., Manshor,
M.R., Wan Nazri, W.B. & Sapuan,
S.M. 2014. Optimizing the parameters in durian skin fiber
reinforced polypropylene composites by response surface methodology. Industrial
Crops and Products 54: 291-295.
Nur Aimi, M.N., Mohd Adlan,
M.K., Nurhafizah, S.M., Anuar,
H., Mel, M. & Othman, R. 2011. Effect of Rhizopus Oryzaefermentation
on kenaf based polylactic acid’s monomer. IIUM Engineering Journal (Special Issue on Biotechnology) 12(4):
83-87.
Sahan, Y.
2011. Effect of Prunus lauroceranusL. (Chery Laurel), leaf extracts on bread
spoilage fungi. Bulgarian Journal of Agriculture Science 17(1):
83-92.
Segal,
L., Creely, J.J., Martin Jr., A.E. & Conrad, C.M.
1959. An empirical method for estimating the degree of
crystallinity of native cellulose using the X-Ray diffractometer. Textile
Research Journal 29: 786-794.
Shahzad,
A. 2011. Hemp fibre and its composites - A review. Journal of Composite Materials 46(8):
973-986.
Siqueira,
G., Bras, J. & Dufresne, A. 2010. Cellulosic bionanocomposites:
A review of preparation, properties and applications. Polymer 2:
728-765.
Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A.
& Zaman, H.M.D.K. 2012. Effects of
alkali treatments on the tensile properties of pineapple leaf fibre reinforced high impact polystyrene composites. Pertanika Journal of Science and Technology 20(2):
409-414.
Siyamak, S.,
Ibrahim, N.A., Abdolmohammadi, S., Wan Yunus, W.M.Z. & Rahman, A.B. 2012. Enhancement of
mechanical and thermal properties of oil palm empty fruit bunch fibre poly(butylenesadipate-co-terephtalate) biocomposites by
matrix esterification using succinic anhydride. Molecules 17(2):
1969-1991.
Tsukamoto,
J., Duran, N. & Tasic, L. 2013. Nanocellulose and bioethanol production from orange waste
using isolated microorganisms. Journal of Brazilian Chemical Society 24(9):
1537-1543.
*Corresponding author; email: aimi_nasir@ymail.com
|