Sains Malaysiana 44(3)(2015):
309–316
Utilization
of the White-rot Fungus, Trametes
menziesiifor Landfill Leachate Treatment
(Penggunaan Kulat
Busuk Putih,
Trametes menziesiiuntuk Pengolahan Bahan Larut Lesap Tanah Isian)
W.A.R. WAN RAZARINAH1,2*, M. NOOR ZALINA1 & NOORLIDAH ABDULLAH1
1Mushroom
Research Centre, University of Malaya, Faculty of Science,
Institute
of Biological Sciences, 50603 Kuala Lumpur, Malaysia
2Faculty
of Applied Sciences, MARA University of Technology, 40450 Shah Alam,
Selangor Darul Ehsan, Malaysia
Received:
22 April 2014/Accepted: 30 August 2014
ABSTRACT
The study monitored the characteristics of the leachate collected
from ten different landfills and presented the experimental work
for the treatment of leachate by immobilized Trametes menziesii. Variation in biological
oxygen demand (BOD), chemical oxygen demand (COD)
and ammoniacal nitrogen (NH3-N)
showed that the age of the leachate has a significant effect on
its characteristics and composition. The BOD5/COD
ratio tends to decrease as the age of leachate increases,
varying from 0.71 for a relatively 'fresh' leachate to 0.62 for
an older (more stabilized) one. Variations in the characteristics
of the leachate suggested that these leachates are difficult to
treat. The principal pollutants in the leachate samples were organic
and ammonia loads. Treatment of leachate using immobilized Trametes
menziesii achieved 89.14 and 2.11%
removals for leachate BOD5
and COD,
respectively. These findings suggested that using immobilized Trametes menziesii can
remove promising percentage of BOD and COD leachate.
Keywords: BOD; COD;
leachate; white-rot fungi
ABSTRAK
Pencirian bahan larut lesap daripada
10 tanah isian
berbeza dan hasil
eksperimen dalam
pengolahan bahan larut lesap oleh
kultur pegun
Trametes menziesii telah dikaji. BOD5,
COD
dan NH3-N
yang bervariasi menunjukkan
bahawa usia
bahan larut
lesap memberikan kesan yang signifikan ke atas ciri
dan kandungan
bahan larut lesap.
Nisbah BOD5/COD menunjukkan pengurangan apabila usia bahan
larut lesap
meningkat, ia 0.71 bagi bahan larut
lesap yang 'baru' dan 0.62 bagi bahan
larut lesap
yang lebih berusia. Ciri-ciri bahan larut lesap yang bervariasi menyebabkan ia sukar
untuk diolah.
Bahan cemar yang utama dalam bahan larut
lesap adalah
bahan organik dan
ammonia. Pengolahan bahan
larut lesap
oleh kultur pegun
Trametes menziesii mencatat 89.14 dan 2.11% pembuangan BOD5 dan COD bahan
larut lesap. Penemuan
ini mencadangkan
bahawa penggunaan kultur pegun
Trametes menziesii
berupaya untuk menyingkirkan bahan larut lesap BOD5
dan COD dalam
peratusan yang menggalakkan.
Kata kunci: Bahan larut lesap; BOD; COD; kulat busuk putih
REFERENCES
Al-Muzaini, S. 2006. Characteristics of leachate at the Qurain dumping site. Journal of Food, Agriculture & Environment 4:
251-254.
APHA. 1998. Standard Methods for the
Examination of Water and Wastewater. 20th ed. Washington, D.C.: American
Public Health Association.
Baun, A., Ledin,
A., Reitzel, L.A., Bjerg,
P.L. & Christensen, T.H. 2004. Xenobiotic organic compounds in leachates from ten Danish MSW
landfills-chemical analysis and toxicity tests. Water Research 38:
3845-3858.
Bilgili, M.S., Demir, A.
& Ozkaya, B. 2007. Influence of leachate
recirculation on aerobic and anaerobic decomposition of solid wastes. Journal
of Hazardous Materials 143: 177-183.
Chu, L., Cheung, K. &
Wong, M. 1994. Variations
in the chemical properties of landfill leachate. Environmental
Management 18: 105-117.
Cotman, M. & Gotvajn,
A.Z. 2010. Comparison of different physico-chemical
methods for the removal of toxicants from landfill leachate. Journal
of Hazardous Materials 178: 298-305.
Coulibaly, L., Gourene, G.
& Agathos, S.N. 2003. Utilization
of fungi for biotreatment of raw wastewaters. African
Journal of Biotechnology 2: 620-630.
Deng, Y. 2007. Physical and
oxidative removal of organics during Fenton treatment of mature municipal
landfill leachate. Journal of Hazardous Materials 146: 334-340.
Ding, A., Zhang, Z., Fu, J., Cheng, L. &
Zhang, Z. 2001. Biological control of leachate from municipal
landfills. Chemosphere 44: 1-8.
Edi Munawar & Fellner, J. 2013. Guidelines for Design and Operation of Municipal
Solid Waste Landfills in Tropical Climates: ISWA – the International
Solid Waste Association.
El-Fadel,
M., Bou-Zeid, E., Chahine,
W. & Alayli, B. 2002. Temporal variation of leachate quality from pre-sorted and baled
municipal solid waste with high organic and moisture content. Waste
Management 22: 269-289.
Environmental
Quality Act (EQA). 2009. Control of pollution from solid
waste transfer station and landfill, Regulation 13 (2009) Schedule 2], under
the Laws of Malaysia. Malaysia Environmental Quality
Act 1974, Minister of Natural Resources and Environmental, Malaysia.
Eugenio, M.E., Carbajo, J.M., Terrón, M.C., González, A.E. & Villar,
J.C. 2008. Bioremediation of lignosulphonates by lignin-degrading basidiomycetous fungi. Bioresource Technology 99: 4929-4934.
Faeiza Haji Buyong,
Mohamad Syarizal Abdul Kadir & Fairus Muhammad Darus.
2004. Comparison of selected parameters of leachate in different age of closed
landfills. 17th Analysis Chemistry Malaysia Symposium. Swiss-Garden Resort & Spa, Kuantan, Pahang, Malaysia.
Jemec, A., Tišler, T. & Žgajnar-Gotvajn, A. 2012. Assessment of landfill leachate toxicity reduction after biological
treatment. Archives of Environmental Contamination and Toxicology 62:
210-221.
Kamaruddin, M.A., Yusoff,
M.S., Abdul Aziz, H. & Hung, Y.T. 2014. Sustainable
treatment of landfill leachate. Applied Water Science DOI:
10.1007/s13201-014-0177-7.
Kang,
K.H., Shin, H.S. & Park, H. 2002. Characterization of humic substances present in landfill leachates with different landfill ages and its
implications. Water Research 36: 4023- 4032.
Kim, Y.K., Park, S.K. & Kim, S.D. 2003. Treatment of landfill leachate by white rot fungus in combination with zeolite
filters. Journal of Environmental Science and Health - Part A
Toxic/Hazardous Substances and Environmental Engineering 38: 671-683.
Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. & Christensen, T.H. 2002. Present and long-term composition of MSW landfill leachate: A review. Critical
Reviews in Environmental Science and Technology 32: 297-336.
Kotterman, M., Wasseveld, R.A. & Field,
J.A. 1996. Hydrogen peroxide production as a limiting factor in
xenobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Applied
and Environmental Microbiology 62: 880-885.
Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.S., Hofrichter,
M. & Rogalski, J. 1999. Biodegradation of lignin by white rot fungi. Fungal Genetic and Biology 27: 175-185.
Marttinen, S.K., Kettunen,
R.H., Sormunen, K.M., Soimasuo,
R.M. & Rintala, J.A. 2002. Screening of
physical-chemical methods for removal of organic material, nitrogen and
toxicity from low strength landfill leachates. Chemosphere 46: 851-858.
Miller,
P.A. & Clesceri, N.L. 2003. Waste Sites as
Biological Reactors: Characterization and Modeling. Florida: Lewis
Publishers, CRC Press.
Noorlidah Abdullah, Wan Razarinah,
W.A.R., Noor Zalina Mahmood & Rosna Mat Taha. 2013. Treatment of landfill leachate using Ganoderma australemycelia
immobilized on Ecomat. International Journal of
Environmental Science and Development 4: 483-487.
Pointing,
S.B. 2001. Feasibility of bioremediation by white-rot fungi. Mini-review. Applied and Environmental Microbiology 57: 20-33.
Polak, J. & Jarosz-Wilkołazka,
A. 2010. Whole-cell fungal transformation of precursors into
dyes. Microbial Cell Factories 9: 51.
Pozdnyakova, N.N., Dubrovskaya,
E.V., Makarov, O.E., Nikitina, V.E. & Turkovskaya, O.V. 2011. Production of ligninolytic enzymes by white-rot fungi during
bioremediation of oil-contaminated soil. Soil Biology 22:
363-377.
Saetang, J. & Babel, S. 2010. Fungi immobilization for landfill leachate treatment. Water
Science and Technology 62(6): 1240-1247.
Saetang, J. & Babel, S. 2009. Effect of
leachate loading rate and incubation period on the treatment efficiency by T. versicolorimmobilized on foam cubes. International
Journal of Environment Science and Technology 6(3): 457-466.
Samudro, G. & Mangkoedihardjo,
S. 2010. Review on BOD, COD and BOD/COD ratio: A triangle zone for toxic, biodegradable
and stable levels. International Journal of Academic Research 2:
235-239.
Sanitary
landfills. 2009. http://www.whbenvironment.com. Accessed on April 14, 2009.
Slack, R.J., Gronow, J.R. & Voulvoulis, N. 2005. Household hazardous
waste in municipal landfills: Contaminants in leachate. Science of the Total
Environment 337: 119-137.
Tatsi, A.A. & Zouboulis,
A.I. 2002. A field investigation of the quantity and quality
of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki,
Greece). Advances in Environmental Research 6: 207-219.
Turkdogan-Aydinol, F.I., Yetilmezsoy, K. & Comez, S.
2011. Effect of extracellular enzyme activity on digestion
performance of mesophilic UASB reactor treating high-strength municipal wastewater. Bioprocess and Biosystems Engineering 34(4):
389-401.
Waites, M.J., Morgan, N.L., Rockey, J.S.
& Higton, G. 2001. Industrial
Microbiology: An Introduction. London: Blackwell Science Ltd.
Walter,
M., Boyd-Wilson, K., Boul, L., Ford, C., McFadden,
D., Chong, B. & Pinfold, J. 2005. Field-scale
bioremediation of pentachlorophenol by Trametes versicolor. International Biodeterioration & Biodegradation 56: 51-57.
Zouboulis, A.I., Loukidou,
M.X. & Christodoulou, K. 2001. Enzymatic treatment of
sanitary landfill leachate. Chemosphere 44: 1103-1108.
*Corresponding
author; email: razarina408@yahoo.com
|