Sains Malaysiana 44(3)(2015): 317–323
Dry
Deposition of SO2
over Dry Dipterocarp Forest, Thailand
(Pemendapan
Kering SO2 ke atas Hutan
Kering Dipterokarpa,
Thailand)
PHUVASA CHANONMUANG1,2*, POJANIE KHUMMONGKOL3 & KAZUHIDE MATSUDA4
1Environmental Technology
Division, The Joint Graduate School of Energy and Environment
King
Mongkut's University of Technology Thonburi, 126 Pracha
U-thit Rd., Bang-Mod
Bangkok
10140, Thailand
2Thailand Institute of
Scientific and Technological Research, 235 Moo 3 Technopolis,
Rungsit Nakornayok Rd., Klong 5, Klong-Luang, Pathumthani 12120, Thailand
3Environmental Technology
Division, School of Energy Environment and Materials
King Mongkut's University
of Technology Thonburi, 126 Pracha U-thit Rd., Bang-Mod
Bangkok 10140. Thailand
4Faculty of Agriculture
Field Science Center, Tokyo University of Agriculture and Technology
3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
Received: 3 June 2014/Accepted:
14 September 2014
ABSTRACT
The aerodynamic gradient method was
applied to estimate dry deposition flux of SO2 over dry deciduous
forest in Nakorn Ratchasima province, Thailand. The meteorological parameters and concentrations of SO2 were
measured in real time for one year on the experimental tower at 36 and 27 m
high. The flux observed in the wet season were found two times higher than the
value observed in the dry seasons, i.e. 20±7.58 and 10±11.05 ng m-2 s-1,
respectively. The leaf area index and the ambient humidity were believed to
assert the rate of SO2 deposition. The average friction velocities
were estimated to be 0.26±0.02 and 0.48±0.06 m s–¹, for the
dry and the wet season, respectively. The friction velocity was very much
depended on the surface roughness of the forest canopy. The Vd of
SO2 evaluated
by the aerodynamic gradient was compared with Vd calculated
by the resistance model. It was found that the observed Vd was
in close proximity with the model prediction in daytime in all conditions, i.e.
wet, dry and annual average. The annual average Vd determined
by the Aerodynamic gradient was 0.43±0.06 cm s-1.
Keywords: Aerodynamic gradient;
deposition velocity; resistance model; sulfur dioxide
ABSTRAK
Kaedah kecerunan aerodinamik
digunakan untuk
menganggarkan pemendapan kering SO2 ke atas hutan kering
di wilayah Nakorn
Ratchasima, Thailand. Parameter
meteorologi dan kepekatan SO2 diukur pada masa sebenar untuk satu tahun
di menara eksperimen
pada ketinggian 36 dan 27 m. Fluks yang diperhatikan pada musim hujan mempunyai
nilai dua
kali ganda lebih tinggi
daripada nilai
yang diperhatikan pada dalam musim kering,
iaitu masing-masing
pada 20±7.58 dan 10±11.05
ng m-2 s-1.
Indeks kawasan
daun dan kelembapan
sekeliling digunakan
untuk mendapatkan kadar pemendapan
SO2.
Geseran
purata kelajuan dianggarkan masing-masing pada 0.26±0.02 dan 0.48±0.06
m s–¹
untuk musim
kering dan hujan.
Halaju
geseran sangat bergantung kepada kekasaran permukaan kanopi hutan. Vd SO2 dinilai melalui kecerunan aerodinamik dibandingkan dengan Vd yang
dikira melalui
model rintangan. Didapati bahawa penilaian Vd hampir sama
dengan ramalan
model di siang hari dalam
semua keadaan,
iaitu basah, kering
dan purata
tahunan. Purata tahunan Vd yang
ditentukan melalui
kecerunan aerodinamik adalah pada 0.43±0.06
cm s-1.
Kata kunci: Halaju pemendapan; kecerunan aerodinamik; model rintangan; sulfur dioksida
REFERENCES
Chimjan, O. & Khummongkol,
P. 2012. Evaluation of dry deposition velocity of SO2 by
Bowen ratio and resistance model over rice paddy in tropical climate. Sains Malaysiana41(6):
747-754.
Cooper, D.J.
& Saltzman, E.S. 1993. Measurements of atmospheric dimethylsulfide, hydrogen sulfide and carbon disulfide
during GTE/CITE 3. Geophys. Res. 98:
23397- 23409.
Erisman, J.W. & Baldocchi,
D. 1994. Modelling dry deposition of SO2. Tellus 46(B): 157-171.
Erisman, J.W. & Draaijers,
G.P.J. 1995. Atmospheric deposition in relation to
acidification and eutrophication. Studies in Environmental Science 63:
55-75.
Erisman, J.W., Hogenkamp,
J.E.M., Van Putten, E.M., Uiterwijk,
J.W., Kemkers, E., Wiese, C.J. & Mennen, M.G.
1999. Long-term continuous measurements of SO2 dry deposition over the speulder forest. Water, Air and Soil Pollution 109:
237-262.
Erisman, J.W., Versluis,
A.H., Verplanke, T.A.J.W., de Haan,
D., Anink, D., van Elzakker,
B.G., Mennen, M.G. & van Aalst, R.M. 1993. Monitoring the dry deposition of
SO2 in
the Netherlands: Results for grassland and heather vegetation. Atmospheric
Environment 27(7): 1153-1161.
Delmas, R. & Servant, J. 1983. Atmospheric
balance of sulfur above an equational forest. Tellus Series B. and Chemical Meteorology 35: 110-120.
Feliciano,
M.S., Pio, C.A. & Vermeulen,
A.T. 2001. Evaluation of SO2 dry deposition
over short vegetation in Portugal. Atmospheric Environment 35:
3633-3643.
Fellenberg, G. 2000. The Chemistry of
Pollution. London: John Wiley and Sons.
Fowler, D., Pilegaard, K., Sutton, M.A., Ambus,
P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi,
S., Schjoerring, J.K., Granier,
C., Neftel, A., Isaksen,
I.S.A., Laj, P., Maione,
M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl,
K., Flechard, C., Tuovinen,
J.P., Coyle, M., Gerosa, G., Loubet,
B., Altimir, N., Gruenhage,
L., Ammann, C., Cieslik,
S., Paoletti, E., Mikkelsen,
T.N., Ro-Poulsen, H., Cellier,
P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I., Rinne,
J., Misztal, P., Nemitz,
E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala,
T., Skiba, U., Brüggemann,
N., Zechmeister-Boltenstern, S., Williams, J.,
O’Dowd, C., Facchini, M.C., de Leeuw,
G., Flossman, A., Chaumerliac,
N. & Erisman, J.W. 2009. Atmospheric composition
change: Ecosystems-Atmosphere interactions. Atmospheric Environment 43:
5193-5267.
Granat, L. & Richter, A. 1995. Dry deposition to
pine of sulphur dioxide and ozone at low
concentration. Atmospheric Research 29: 1677-1683.
Hayashi, K.,
Matsuda, K., Takahashi, A. & Nakaya, K. 2011. Atmosphere-forest exchange of ammoniacalitrogen in a subalpine decidous forest in Central Japan
during a summer week. Asian Journal of Atmospheric Environment 5-2:
134-143.
Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker Jr., P.R. & Matt, D.R. 1987. A preliminary multiple
resistance routine for deriving dry deposition velocities from measured
quantities. Water, Air, and Soil Pollution 36: 311-330.
Horvath, L., Nagy, Z. & Weidinger,
T. 1998. Estimation of dry deposition velocity of nitric
oxide, sulfur dioxide, and ozone by the gradient method above short vegetation
during the TRACT campaign. Atmospheric Environment 32: 1317-1322.
Jitto, P., Vinitnantarat, S. & Khummongkol, P. 2007. Dry deposition velocity of sulfur
dioxide over rice paddy in tropical region. Atmospheric Research 85:
140-147.
Matsuda, K., Sase, H., Murao, N., Fukazawa, T., Khoomsub,
K., Chanonmuang, P., Visaratana,
T. & Khummongkol, P. 2012. Dry and wet
deposition of elemental carbon on a tropical forest in Thailand. Atmospheric
Environment 54: 282-287.
Matsuda, K.,
Fujimura, Y., Hayashi, K., Takahashi, A. & Nakaya,
K. 2010. Deposition velocity of PM2.5 sulfate in the
summer above a deciduous forest in central Japan. Atmospheric Environment 44:
4582-4587.
Matsuda, K.,
Watanabe, I., Wingpud, V., Theramongkol,
P. & Ohizumi, T. 2006. Deposition
velocity of O3 and SO2 in the dry and wet
season above a tropical forest in northern Thailand. Atmospheric
Environment 40: 7557-7564.
Matsuda, K.,
Watanabe, I., Vitsanu, W., Phunsak,
K., Pojanie, K., Supat, W.
& Totsuka, T. 2005. Ozone dry deposition above a
tropical forest in the dry season in northern Thailand. Atmospheric
Environment 39: 2571-2577.
Matsuda, K., Aoki, M., Zhang, S., Kominami,
T., Fukuyama, T., Fukuzaki, N. & Totsuka, T. 2002. Dry
deposition velocity of sulfur dioxide on a red pine forest in Nagano, Japan. Society
for Atmospheric Environment 37: 387-392.
Matsuda, K., Fukuzaki, N. & Maeda, M. 2001. A case
study on estimation of dry deposition of sulfur and nitrogen compounds by
inferential method. Water, Air and Soil Pollution 130: 553-558.
Myles, L.T.,
Meyer, T.P. & Robinson, L. 2007. Relaxed eddy accumulation measurements of
ammonia, nitric acid, sulfur dioxide and particulate sulfate dry deposition
near Tampa, FL, USA. Environmental Research Letters 2: 034004.
Padro, J. 1993. Seasonal contrasts in modeled and observed dry
deposition velocities of O3, SO2 and NO2 over surfaces. Atmospheric
Environment 27: 807-814.
Rodhe, H. 1978. Budgets and turn-over times of
atmospheric sulfur compounds. Atmospheric Environment 12(1-3): 671- 680.
Sorimachi, A., Sakamoto, K., Ishihara, H.,
Fukuyama, T., Utiyama, M., Liu, H., Wang, W., Tang,
D., Dong, X. & Quan, H.
2003. Measurements of
sulfur dioxide and ozone dry deposition over short vegetation in northern China
- A preliminary study. Atmospheric Environment 37: 3157-3166.
Thornton,
D.C., Bandy, A.R., Blomquist, B.W., Davis, D.D. &
Talbot, R.W. 1996. Sulfur dioxide as a source of condensation nuclei in the
upper troposphere of Pacific Ocean. Geophys.
Res. 101: 1883-1890.
Tsai, J.L., Chen, C.L., Tsuang, B.J., Kuo, P.H., Tseng,
K.H., Hsu, T.F., Sheu, B.H. & Liu, C.P. 2010.
Observation of SO2 dry deposition velocity at a high elevation
flux tower an evergreen broadleaf forest in Central Taiwan. Atmospheric
Environment 44: 1011-1019.
Wesley, M.L. &
Hicks, B.B. 2000. A review of the current status of knowledge
on dry deposition. Atmospheric Environment 34: 2261-2282.
Xu, Y.
& Carmichael, G.R. 1998a. An assessment of sulfur
deposition pathways in Asia. Atmospheric Environment 33(21):
3473-3486.
Xu, Y.
& Carmichael, G.R. 1998b. Modeling the dry deposition velocity of sulfur
dioxide and sulfate in Asia. Applied Meteorology and Climatology 37(10):
1084-1099.
Zhang, L., Brook, J.R.
& Vet, R. 2003. Evaluation of a non-stomatal resistance
parameterization for SO2 dry deposition. Atmospheric
Environment 37: 2941-2947.
*Corresponding author; email: phuvasa@tistr.or.th
|