Sains Malaysiana 44(3)(2015):
325–336
Controlling
Spatial Forest Structure with Spatial Simulation in Forest Management Planning:
A Case Study from Turkey
(Mengawal Struktur Hutan Reruang dengan Simulasi Reruang dalam Perancangan Pengurusan Hutan: Suatu Kajian Kes dari Turki)
ALI İHSAN KADIOĞULLARI1*, SEDAT KELEŞ2, EMIN ZEKI BAŞKENT1 & ÖZKAN BINGÖL3
1Faculty of Forestry, Karadeniz Technical
University, 61080 Trabzon, Turkey
2Faculty of Forestry, Çank?r? Karatekin University, 18200 Çank?r?,
Turkey
3Department of Software Engineering, Faculty of Engineering, Gümüşhane University, 29100 Gümüşhane,
Turkey
Received: 30 May 2014/Accepted: 18 September
2014
ABSTRACT
Decision Support Systems (DSS) is widely used to develop
spatially explicit forest management plans through the integration of spatial
parameters. As a part of this study, a simulation-based spatial DSS,
the ETÇAPSimülasyon program was
developed and tested in a case study area. The system has the capability to
control the spatial structure of forests based on a geodatabase. Geographical
Information Systems (GIS) was used to generate the
database, using spatial parameters including opening size, block size and
green-up delay in addition to other attribute data such as the empirical yield
table and the product assortment table. Based on the simulation technique, a
spatial forest management model was developed to link strategic planning with
tactical planning on a stand base and to present results with a number of
performance indicators. One important component of the model determined all
spatial characteristics with spatial parameters and patch descriptions. A stand
growth and yield simulation model (BARSM) based on the
relationship between current and optimal basal area development was also generated
to project future stand characteristics and analyze the effects of various silvicultural treatments. A number of spatial forest
management strategies were developed to generate spatially implementable
harvest schedules and perform spatial analyses. The forest management concept
was enhanced by employing a spatial simulation technique to help analyzing the
ecosystem structure. Spatial characteristics for an on-the-ground forest
management plan were then developed. The model was tested in Alt?noluk Planning Unit (APU)
using a spatial simulation technique based on various spatial parameters. The
results indicated that the spatial model was able to satisfy the spatial
restriction requirements of the forest management plan.
Keywords: Block size; fragmentation metrics; green-up delay;
opening size; spatial forest planning
ABSTRAK
Sistem sokongan
keputusan (DSS) digunakan
secara meluas
untuk membangunkan pelan pengurusan hutan reruang nyata
melalui integrasi
parameter reruang. Sebagai sebahagian
daripada kajian
ini, simulasi berasaskan
reruang DSS, program ETÇAPSimülasyon, dibangunkan
dan diuji
di kawasan kajian kes. Sistem ini berkeupayaan
untuk mengawal
struktur reruang hutan berdasarkan pangkalan data geo. Sistem
maklumat geografi
(GIS)
telah digunakan
untuk menghasilkan pangkalan data, menggunakan
parameter reruang termasuk
saiz pembuka, saiz
blok dan
lewat hijau-naik
selain data atribut lain seperti jadual hasil empirik dan jadual pelbagai
produk. Berdasarkan teknik simulasi,
model pengurusan hutan
reruang telah dibangunkan
untuk menghubungkan
perancangan strategik dengan perancangan taktikal di suatu asas dan membentangkan
keputusan dengan
beberapa petunjuk prestasi. Suatu komponen penting
model menentukan semua
ciri-ciri reruang dengan parameter reruang dan tampalan penerangan.
Pertumbuhan dirian
dan hasil simulasi
model (BARSM) berdasarkan hubungan antara pembangunan kawasan asas semasa dan
optimum juga dijana
untuk projek ciri-ciri
dirian masa depan
dan menganalisis kesan-kesan rawatan silvikultur yang pelbagai. Beberapa
strategi pengurusan hutan reruang dibangunkan
untuk menjana
jadual tuai reruang
yang dapat dilaksanakan
dan melakukan analisis
reruang. Konsep pengurusan hutan
ini telah
ditingkatkan dengan menggunakan teknik simulasi reruang untuk membantu menganalisis struktur ekosistem. Ciri-ciri reruang untuk
rancangan pengurusan hutan dirian telah
dibangunkan. Model
ini diuji dalam
Unit Perancangan Alt?noluk
(APU)
menggunakan teknik
simulasi reruang berdasarkan pelbagai parameter
reruang. Keputusan menunjukkan bahawa
model reruang telah
berjaya memenuhi syarat-syarat sekatan reruang rancangan pengurusan hutan.
Kata kunci: Lewat hijau-naik; matriks perpecahan; perancangan hutan reruang; saiz blok; saiz pembuka
REFERENCES
Başkent, E.Z. & Jordan, G.A. 2002. Forest landscape
management modeling using simulated annealing. Forest Ecology and Management 165: 29-45.
Başkent, E.Z. & Jordan, G.A. 1996. Designing forest
management to control spatial structure of landscapes. Landscape and Urban
Planning 34: 55-74.
Başkent, E.Z. & Jordan, G.A. 1995. Characterizing
spatial structure of forest landscapes. Canadian Journal of Forest Research 25:
1830-1849.
Başkent, E.Z. & Jordan G.A.
1991. Spatial wood supply
simulation modeling. Forestry Chronicle 67 (6): 610-621.
Başkent, E.Z. & Keleş,
S. 2009. Developing alternative forest management planning strategies
incorporating timber, water and carbon values: An examination of their
interactions. Environmental Modeling and Assessment 14: 467-480.
Başkent, E.Z. & Keleş,
S. 2005. Spatial forest planning: A review. Ecological Modelling 188:
145-173.
Başkent, E.Z., Keleş,
S. & Kad?oğullar?, A.İ. 2014.
Challenges in developing and implementing a decision support
systems (ETÇAP) in forest management planning: A case study in Honaz and Ibrad?, Turkey. Scandinavian
Journal of Forest Research DOI: 10.1080/02827581.2013. 822543.
Borges, J.G. & Hoganson, H.M. 2000. Structuring a landscape by forestland
classification and harvest scheduling spatial constraints. Forest Ecology
and Management 139: 269-275.
Borges, J.G. & Hoganson, H.M. 1999. Assessing the impact of management
unit design and adjacency constraints on forest wide spatial conditions and
timber revenues. Canadian Journal of Forest Research 29: 1764-1774.
Boston, K. & Bettinger, P. 1999. An analysis of Monte Carlo integer
programming, simulated annealing, and tabu search
heuristics for solving spatial harvest scheduling problems. Forest Science 45(2):
292-301.
Caro, F., Constantino, M., Martins, I. & Weintraub, A. 2003. A 2-opt tabu search
procedures for the multiperiod forest
harvesting problem with adjacency, green-up, old growth, and even flow
constraints. Forest Science 49(5): 738-751.
Clark, M.M., Meller, R.D. & McDonald, T.P. 2000. A three stage heuristic for harvest scheduling
with access road network development. Forest Science 46: 204-218.
Clements, S., Dallain,
P. & Jamnick, M. 1990. An operationally,
spatially constrained harvest scheduling model. Canadian Journal of Forest
Research 20: 1438-1447.
Crowe, K. & Nelson, J. 2003. An indirect search algorithm for harvest scheduling under adjacency
constraints. Forest Science 49(1): 1-11.
Davis, L.S., Johnson, K.N., Bettinger, P. & Howard, T.E. 2001. Forest Management: to Sustain Ecological,
Economic, and Social Values. Columbus: McGraw-Hill Companies Inc. p. 804.
Falcao, A.O. & Borges, J. 2002. Combining
random and systematic search heuristic procedures for solving spatially
constrained forest management scheduling models. Forest Science 48(3):
608-621.
Hoganson, H.M. & Borges, J.G. 1998. Using dynamic programming and overlapping subproblems to address adjacency in large harvest scheduling problems. Forest
Science 44(4): 526-538.
Jamnick, M.S. & Walters, K.R. 1993. Spatial and temporal
allocation of stratum-based harvest schedules. Canadian Journal of Forest
Research 23: 402-413.
Jordan, G.A. & Başkent,
E.Z. 1992. A case study in spatial wood supply analysis. The Forestry Chronicle 68(4): 503-516.
Kad?oğullar?, A.İ. 2009. Controlling spatial forest
structure with meta-heuristics techniques in forest management planning:
Spatial planning. PhD Thesis, Karadeniz Technical
University, Faculty of Forestry, Trabzon, Turkey, p. 175 (Unpublished).
Keleş, S. 2008. Designing and
developing a decision support system for forest management planning, 2008. PhD Thesis, Karadeniz Technical University, Faculty
of Forestry, Trabzon, Turkey, p. 209 (Unpublished).
Korosuo, A. 2013. Spatial problems in long-term
forest planning. From Preferences to Plans. PhD
Thesis. Swedish University of Agricultural Sciences. pp. 1-42 (Unpublished).
Kurttila, M. 2001. The spatial structure of forests in
the optimization calculations of forest planning: A landscape ecological
perspective. Forest Ecology and Management 142: 129-142.
Liu, G., Nelson, J.D. & Wardman, C.W. 2000. A target-oriented approaches to forest
ecosystem design-changing the rules of forest planning. Ecological Modelling 127: 269-281.
McDill, M.E. & Braze, J. 2000. Comparing adjacency
constraint formulations for randomly generated forest planning problems with
four age-class distributions. Forest Science 46(3): 423-436.
McGarigal, K. & Marks, B.J. 1995. FRAGSTATS. USDA Forest Service, Pacific Northwest Research Station, Portland,
OR. General Technical Report PNW–351. p. 141.
Morgan, P., Aplet, G.H., Haufler, J.B.,
Humphries, H.C., Moore, M.M. & Wilson, W.D. 1994. Historical range of variability: A useful tool
for evaluating ecosystem change. In Assessing Forest Ecosystem Health in the
Inland West, edited by Sampson, R.N. & Adams, D.A.
Binghamton, NY: Haworth Press. pp. 87-111.
Mullen, D.S. & Butler, R.M. 1997. The design
of a genetic algorithm based spatially constrained timber harvest scheduling
model. http://www.for.msu.edu/e4/e4 ssafr97. html.
Accessed on 1 August 2013.
Murray, A.T. 1999. Spatial restrictions in
harvest scheduling. Forest Science 45(1): 45-52.
Murray, A.T. & Weintraub, A. 2002. Scale and
unit specification influences in harvest scheduling with maximum area
restrictions. Forest Science 48(4): 779-789.
Murray, A.T. & Church, R.L. 1995. Heuristic
solution approaches to operational forest planning problems. OR Spektrum17: 193-203.
Nelson, J. & Brodie, J.D. 1990. Comparison
of a random search algorithm and mixed integer programming for solving
area-based forest plans. Canadian Journal of Forest Research 20:
934-942.
Nur, A.M.M., Jordan, G.A. & Başkent,
E.Z. 2000. Spatial stratification. Forestry Chronicle 76: 311-317.
Richards, E.W. & Gunn, E.A. 2000. A model
and tabu search method to optimize stand harvest and
road construction schedules. Forest Science 46(2): 188-203.
Sessions, J. & Sessions, J.B. 1991. Scheduling
and Network Analysis Program (SNAP II) Users Guide Version 1.02.,
Corvallis, OR: Oregon State University.
Snyder, S. & ReVelle, C. 1997. Dynamic selection of harvests with adjacency restrictions: The SHARe model. Forest Science 43(2): 213-222.
Wimberly, M.C. 2002. Spatial simulation of historical
landscape patterns in coastal forests of the Pacific Northwest. Canadian
Journal of Forest Research 32: 1316-1328.
*Corresponding author;
email: alikadi@ktu.edu.tr
|