Sains Malaysiana 44(3)(2015): 429–439
Enhancement
of Gaseous BTEX Adsorption on RH-MCM-41
by Chlorosilanes
(Peningkatan Penjerapan Gas BTEX pada RH-MCM-41 oleh Klorosilana)
T. AREEROB1,4, S. CHIARAKORN2*
& N. GRISDANURAK3
1Division
of Environmental Technology, Joint Graduate School of Energy and Environment
King Mongkut's University of Technology
Thonburi, 10140 Thailand
2Division of
Environmental Technology, School of Energy, Environment and Materials
King Mongkut's University of Technology Thonburi, 10140 Thailand
3Department of
Chemical Engineering, Thammasat University, 12120 Thailand
4Center for Energy
Technology and Environment, Ministry of Education, Thailand
Received: 14 January 2014/Accepted: 25 August 2014
ABSTRACT
In this research, the surface hydrophobicity of a mesoporous
molecular sieve synthesized from rice husk silica, called RH-MCM41
was improved via silylation techniqueto enhance the adsorption efficiency of
non-polar volatile organic compound. The effect of chlorosilane leaving on was
analyzed with three silanes containing different numbers of chloride leaving
group; trimethylchlorosilane (TMCS), dimethyldichlorosilane (DMDCS)
and methyltrichlorosilane (MTCS). The unmodified RH-MCM-41
was soaked in 100 mL of 5% v/v of silane reagent at 30ºC for 24 h. The results
showed that the silane loading on the RH-MCM-41 was in the order of
increasing number of leaving groups as MTCS > DMDCS > TMCS.
The crystallinity results studied by X-ray diffractometry indicated that the
silylation did not affect the hexagonal pattern of RH-MCM-41.
However, the porosity of the silylated RH-MCM-41 was significantly
decreased after silylation, especially by MTCS,
due to pore blocking. After silylation, the adsorption performance of gaseous BTEX (benzene, toluene, ethylbenzene and xylene) on the silylated RH-MCM-41
was determined by gas chromatography equipped with flame ionization detector (GC-FID).
From the results of humidity effect on adsorbability, the BTEX adsorption
capacity of the unsilylated RH-MCM-41 was dropped a half,
conversely the BTEX adsorption capacity of all
silylated RH-MCM-41 was decreased in range of 20-30% when the
relative humidity increased from 25 to 99%. This was indicated that the influence
of humidity on the BTEX adsorption was relieved after
silylation. In additions, the maximum BTEX adsorption capacity
belonged to RH-MCM-41 silylated by TMCS which
was recommended for the enhancement of non-polar volatile organic compounds
adsorption.
Keywords: Adsorption; BTEX; MCM-41;
rice husk silica; silylation
ABSTRAK
Dalam kajian ini, permukaan kehidrofobian penapis molekul mesoporous
disintesis daripada sekam padi silika, dikenali sebagai RH-MCM41
bertambah baik melalui teknik sililasi untuk mempertingkatkan kecekapan penjerapan sebatian organik yang
tidak berkutub. Kesan klorosilana yang tertinggal dianalisis dengan
tiga silana yang mengandungi jumlah klorida berbeza meninggalkan
kumpulan; trimetilklorosilana (TMCS),
dimetildiklorisilana (DMDCS) dan metiltriklrosilana (MTCS).
RH-MCM-41
yang tidak diubah suai, direndam dalam 100 mL 5% v/v bagi bahana
uji silana pada 30ºC untuk 24 h. Hasil kajian menunjukkan bahawa
bebanan silana ke atas RH-MCM-41
adalah dalam aturan penambahan bilangan meninggalkan kumpulan sebagai
MTCS
> DMDCS > TMCS.
Keputusan habluran yang dikaji oleh belauan sinar-x menunjukkan
bahawa sililasi tidak menjejaskan corak hexagon RH-MCM-41.
Walau bagaimanapun, keliangan sililasi
RH-MCM-41 menurun dengan sekata
selepas sililasi, terutamanya MTCS, kerana menghalang liang.
Selepas sililasi, prestasi penjerapan gas BTEX (benzena,
toluena, etilbenzena dan xilena) pada sililasi
RH-MCM-41
ditentukan melalui kromatografi gas dilengkapi dengan pengesan pengionan
api (GC-FID).
Hasil daripada serapan kelembapan menunjukkan kapasiti penjerapan
BTEX
sililasi
RH-MCM-41 jatuh separuh, sebaliknya kapasiti
penjerapan BTEX untuk semua sililasi
RH-MCM-41
adalah menurun dalam julat 20-30% apabila kelembapan bandingan meningkat
daripada 25 kepada 99%. Ini menunjukkan bahawa pengaruh kelembapan
pada penjerapan BTEX
lebih baik selepas sililasi. Sebagai tambahan, kapasiti maksimum penjerapan BTEX adalah kepunyaan RH-MCM-41
sililasi oleh TMCS yang dicadangkan untuk meningkatkan
penjerapan-tidak berkutup organik meruap.
Kata kunci: BTEX;
MCM-41; penjerapan; sekam padi silika; sililasi
REFERENCES
Appaturi, J.N., Adam, F. & Khanam, Z. 2012. A
comparative study of the regioselective ring opening of styrene oxide with
aniline over several types of mesoporous silica materials. Microporous and
Mesoporous Materials 156: 16-21.
Artkla, S., Kim, W., Choi, W. & Wittayakun, J. 2009.
Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid
catalyst of titania and MCM-41 obtained from rice husk silica. Applied
Catalysis B: Environmental 91(1- 2): 157-164.
Beck, J.S., Vartuli, C., Roth, W.J., Kresge, C.T., Schimitt,
K.D., Chu, T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B.
& Schlenker, J.L. 1992. A new family of mesoporous molecular sieves
prepared with liquid crystal templates. Journal of the American Chemical
Society 114: 10834-10843.
Beim, H.J., Spero, J. & Theodore, L. 1998. Rapid
Guide to Hazardous Air Pollutants. New York: Van Nostrand Reinhold.
Boonpoke, A., Chiarakorn, S., Laosiripojana, N., Towprayoon,
S. & Chidthaisong, A. 2011. Synthesis of activated carbon and MCM-41 from
bagasse and rice husk and their carbon dioxide adsorption capacity. Journal
of Sustainable Energy and Environment 2(2): 77-81.
Branton, P.J., Reynolds, P.A., Studer, A., Sing, K.S.W.
& White, J.W. 1999. Adsorption of carbon tetrachloride by 3.4 nm pore
diameter siliceous MCM-41: Isotherms and neutron diffraction. Adsorption 5:
91-96.
Burleigh, M.C., Markowitz, M.A., Spector, M.S. & Gaber,
B.P. 2001. Direct synthesis of periodic mesoporous organosilicas: Functional
incorporation by co-condensation with organosilanes. Journal of Physical
Chemistry B. 105: 9935-9942.
Chiarakorn, S., Areerob, T. & Grisdanurak, N. 2007.
Influence of functional silanes on hydrophobicity of MCM-41 synthesized from
rice husk. Science and Technology of Advanced Materials 8(1-2): 110-115.
Chumee, J., Grisdanurak, N., Neramittagapong, A. &
Wittayakun, J. 2009. Characterization of platinum-iron catalysts supported on
MCM-41 synthesized with rice husk silica and their performance for phenol
hydroxylation. Science and Technology of Advanced Materials 10(1): Art.
no. 015006.
Deschner, T., Liang, Y. & Anwander, R. 2010. Silylation
efficiency of chlorosilanes, alkoxysilanes and monosilazanes on
aeriodicmesoporous silica. The Journal of Physical Chemistry C. 114:
22603-22609.
Fujita, I., Kuroda, K. & Ogawa, M. 2005. Adsorption of
alcohols from aqueous solutions into a layered silicate modified with
octyltrichlorosilane. Chemistry of Materials 17: 3717-3722.
Fujita, I., Kuroda, K. & Ogawa, M. 2003. Synthesis of
interlamellarsilylatedderivatives of magadiite and the adsorption behavior for
aliphatic alcohols. Chemistry of Materials 15: 3134-3141.
Grisdanurak, N., Chiarakorn, S. & Wittayakun, J. 2003.
Utilization of mesoporous molecular sieves synthesized from natural source rice
husk silica to chlorinated volatile organic compounds (CVOCs) adsorption. Korean
Journal of Chemical Engineering 20: 950-955.
Hakuman, M. & Naono, H. 2001. A new method of
calculating pore size distribution: Analysis of adsorption isotherms of N2 and CCl4 for
a series of MCM-41 mesoporous silicas. Journal of Colloid and Interface
Science 241(1): 127-141.
Idris, S.A., Robertson, C., Morris, M.A. & Gibson, L.T.
2010. A comparative study of selected sorbents for sampling of aromatic VOCs
from indoor air. Analytical Methods 2: 1803-1809.
Ketcome, N., Grisdanurak, N. & Chiarakorn, S. 2009.
Silylated rice husk MCM-41 and its binary adsorption of water-toluene mixture. Journal
of Porous Materials 16: 41-46.
Klankaw, P., Chawengkijwanich, C., Grisdanurak, N. &
Chiarakorn, S. 2012. The hybrid photocatalyst of TiO2–SiO2 thin film prepared from rice husk silica. Superlattices and Microstructures 51(3):
343-352.
Koyano, K.A., Tatsumi, T., Tanaka, Y. & Nakata, S. 1997.
Stabilization of mesoporous molecular sieves by trimethylation. Journal of
Physical Chemistry B. 101: 9436-9440.
Lang, N. & Tuel, A. 2004. A fast and efficient ion-exchange
procedure to remove surfactant molecules from MCM-41 materials. Chemistry of
Materials 16(10): 1961-1966.
Liao, Q., Sun, J. & Gao, L. 2008. The adsorption of
resorcinol from water using multi-walled carbon nanotubes. Colloids and
Surfaces A: Physicochemical and Engineering Aspects 312: 160-165.
Lin, D.H., Jiang, Y.X., Wang, Y. & Shi-Gang, S. 2008.
Silver nanoparticles confined in SBA-15 mesoporous silica and the application
as a sensor for detecting hydrogen peroxide. Journal of Nanomaterials. Article
ID 473791 doi:10.1155/2008/473791.
Liu, Y.H., Lin, H.P. & Mou, C.Y. 2004. Direct method for
surface silylfunctionalization of mesoporous silica. Langmuir 20(8):
3231-3239.
Ogawa, M., Okutomo, S. & Kuroda, K. 1998. Control of
interlayer microstructures of a layered silicate by surface modification with
organochlorosilanes. Journal of the American Chemical Society 120:
7361-7362.
Ohashi, F., Maeda, M., Inukai, K., Suzuki, M. & Tomura,
S. 1999. Study on intelligent humidity control materials: Water vapor
adsorption properties of mesostructured silica derived from amorphous fumed
silica. Journal of Materials Science 34(6): 1341-1346.
Okutomo, S., Kuroda, K. & Ogawa, M. 1999. Preparation
and characterization of silylated-magadiites. Applied Clay Science 15:
253-264.
Patel, D.B., Singh, S. & Bandyopadhyaya, R. 2011.
Enrichment of benzene from benzene-water mixture by adsorption in silylated
mesoporous silica. Microporous and Mesoporous Materials 137(1-3): 49-55.
Shimojima, A., Mochizuki, D. & Kuroda, K. 2001.
Synthesis of silylatedderivatives of a layered polysilicatekanemite with mono-,
di-, and tri-chloro(alkyl)silanes. Chemistry of Materials 13: 3603-3609.
Tong-On, W., Sthiannopkao, S., Kim, K.W. & Chiarakorn,
S. 2009. Adsorption of arsenic in aqueous solution by RH-Fe-MCM-41. Water
Science and Technology: Water Supply 9(2): 121-126.
Wantala, K., Sthiannopkao, S., Srinameb, B., Grisdanurak, N.
& Kim, K.W. 2010. Synthesis and characterization of Fe- MCM-41 from rice
husk silica by hydrothermal technique for arsenate adsorption. Environmental
Geochemistry and Health 32(4): 261-266.
Yalcin, N. &
Sevinc, V. 2001. Studies on silica obtained from rice husk. Ceramic
International 27(2): 219-224.
Yokoi, T., Yoshitake, H. & Tatsumi, T. 2004. Synthesis
of amino-functionalized MCM-41 via direct co-condensation and post-synthesis
grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal
of Materials Chemistry 14: 951-957.
Yoshitake, H., Yokoi, T. & Tatsumi, T. 2002. Adsorption
of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chemistry
of Materials 14(11): 4603-4610.
Yuan, P., Yang, D., Lin, Z.G., He, H.P., Wen, X.Y., Wang,
L.J. & Deng, F. 2006. Influences of pretreatment temperature on the surface
silylation of diatomaceous amorphous silica with trimethylchlorosilane. Journal
of Non-Crystalline Solids 352: 3762-3771.
Zhao, X.S. & Lu, G.Q. 1998. Modification of MCM-41 by
surface silylation with trimethylchlorosilane and adsorption study. The
Journal of Physical Chemistry B 102: 1556-1561.
*Corresponding
author; email: Siriluk.chi@kmutt.ac.th
|