Sains Malaysiana 44(3)(2015): 457–462

 

The Nonlinear Least Square Fitting for Rotation Curve of Orion Dwarf Spiral

(Penyuaian Kuasa Dua Terkecil Tak Linear bagi Putaran Lengkung Orion Kerdil Berpilin)

 

N. HASHIM1*, Z.Z. ABIDIN2, U.F.S.U. IBRAHIM1, M.S.R. HASSAN2, Z.S. HAMIDI2, R. UMAR4 & Z.A. IBRAHIM3

 

1Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

2Radio Cosmology Research Lab, Physics Department, Faculty of Science, Universiti Malaya

50603 Kuala Lumpur, Malaysia

 

3Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

4Astronomy Unit, Universiti Sultan Zainal Abidin, 21300 Kuala Terengganu,

Terengganu Darul Iman, Malaysia

 

Received: 15 January 2014/Accepted: 21 August 2014

 

ABSTRACT

The basis of the nonlinear least square fitting is to fit the nonlinear rotation curve model with the observed rotation curve of the Orion dwarf galaxy. It has been the most powerful tool to study the distribution of dark matter in galaxies where it is used to obtain the proper mass model of a galaxy. In this paper, we present the rotation curve fit of Orion dwarf galaxy, corrected for asymmetric drift by using the gradient method of nonlinear least square. Our results showed an excellent agreement between the mass models of cored halo profile with the observed rotation curve. Thus, we can estimate the value of disk mass, MD; the core radius, r0 and core density, roof the galaxy with 1-s of uncertainty. We finally indicated the dark matter halo distribution as cored dark matter halo with density, 3.9 × 106MŸ kpc-3.

 

Keywords: Dwarf spiral - rotation curve - dark matter; fitting; galaxies; gradient method

 

ABSTRAK

Asas kepada penyuaian kuasa dua terkecil tak linear adalah menyuaikan model putaran lengkung dengan cerapan putaran lengkung galaksi Orion kerdil. Ia telah menjadi kaedah yang paling berkuasa dalam kajian taburan jirim gelap di dalam galaksi dan ia digunakan untuk mendapatkan model jisim yang bersesuaian untuk suatu galaksi. Di dalam artikel ini, kami mempersembahkan suaian putaran lengkung bagi galaksi Orion kerdil yang telah dibetulkan pecutan asimetri dengan menggunakan kaedah kecerunan daripada kuasa dua terkecil tak linear. Keputusan yang kami peroleh menunjukkan keselarian yang cemerlang antara model jisim profil halo teras dengan cerapan putaran lengkung. Justeru, kami boleh menganggarkan nilai jisim cakera, MD; jejari teras, r0 dan ketumpatan teras, ro bagi suatu galaksi di bawah 1-s ketidakpastian. Kami juga akhirnya menunjukkan bahawa taburan halo jirim gelap adalah halo jirim gelap berteras dengan ketumpatan, 3.9 × 106MŸ kpc-3.

 

Kata kunci: Galaksi; kaedah kecerunan; kerdil berpilin - putaran lengkung - jirim gelap; penyuaian

REFERENCES

Bevington, P.R. & Robinson, D.K. 1969. Data Reduction and Error Analysis for the Physical Sciences. vol. 2. New York: McGraw-Hill.

Binney, J. & Tremaine, S. 2011. Galactic Dynamics. New Jersey: Princeton University Press.

Burkert, A. 1995. The structure of dark matter halos in dwarf galaxies. The Astrophysical Journal Letters 447(1): L25.

Cannon, J.M., Haynes, K., Most, H., Salzer, J.J., Haugland, K., Scudder, J., Sugden, A. & Weindling, J. 2010. The stellar and gaseous contents of the Orion dwarf galaxy. The Astronomical Journal 139(6): 2170.

Carignan, C. & Beaulieu, S. 1989. Optical and HI studies of the ‘gas-rich’ dwarf irregular galaxy ddo 154. The Astrophysical Journal 347: 760-770.

Côté, S., Carignan, C. & Freeman, K.C. 2000. The various kinematics of dwarf irregular galaxies in nearby groups and their dark matter distributions. The Astronomical Journal 120(6): 3027.

Freeman, K.C. 1970. On the disks of spiral and so galaxies. The Astrophysical Journal 160: 811.

Frusciante, N., Salucci, P., Vernieri, D., Cannon, J.M. & Elson, E.C. 2012. The distribution of mass in the Orion dwarf galaxy. Monthly Notices of the Royal Astronomical Society 426(1): 751-757.

Gentile, G., Salucci, P., Klein, U. & Granato, G.L. 2007. NGC 3741: The dark halo profile from the most extended rotation curve. Monthly Notices of the Royal Astronomical Society 375(1): 199-212.

Hashim, N., Salucci, P. & Abidin, Z.Z. 2013. The study of rotation curve with Mond for Eso138-G014. Paper presented at the AIP Conference Proceedings.

Longair, M.S. 2008. Galaxy Formation. Berlin: Springer-Verlag.

Navarro, J.F., Frenk, C.S. & White, S.D.M. 1997. A universal density profile from hierarchical clustering. The Astrophysical Journal 490(2): 493-508.

Navarro, J.F., Frenk, C.S. & White, S.D.M. 1996. The structure of cold dark matter halos. The Astrophysical Journal 462: 563.

Vaduvescu, O., McCall, M.L., Richer, M.G. & Fingerhut, R.L. 2005. Infrared properties of star-forming dwarf galaxies. I. dwarf irregular galaxies in the local volume. The Astronomical Journal 130(4): 1593.

Weldrake, D.T.F., De Blok, W.J.G. & Walter, F. 2003. A high-resolution rotation curve of NGC 6822: A test-case for cold dark matter. Monthly Notices of the Royal Astronomical Society 340(1): 12-28.

 

 

*Corresponding author; email: norsiahashim@um.edu.my

 

 

previous