Sains Malaysiana 44(3)(2015): 473–482
Zero-Dissipative
Trigonometrically Fitted Hybrid Method for Numerical Solution of Oscillatory
Problems
(Kaedah Hibrid Penyuaian Trigonometri Lesapan-Sifar untuk
Penyelesaian Berangka Masalah Berayun)
YUSUF DAUDA JIKANTORO, FUDZIAH ISMAIL*
& NORAZAK SENU
Department
of Mathematics and Institute for Mathematical Research, Universiti Putra
Malaysia
Serdang
43400, Selangor Darul Ehsan, Malaysia
Received: 7 January 2014/Accepted: 3 October 2014
ABSTRACT
In this paper, an improved trigonometrically fitted
zero-dissipative explicit two-step hybrid method with fifth algebraic order is
derived. The method is applied to several problems which solutions are
oscillatory in nature. Numerical results obtained are compared with existing
methods in the scientific literature. The comparison shows that the new method
is more effective and efficient than the existing methods of the same order.
Keywords: Dispersion; hybrid method; oscillatory problems;
oscillatory solution; trigonometrically fitted
ABSTRAK
Dalam kertas ini, suatu penyuaian trigonometri lesapan sifar
kaedah hibrid dua langkah penambahbaikan peringkat kelima diterbitkan. Kaedah
ini digunakan untuk beberapa masalah yang penyelesaiannya berayun. Keputusan
berangka yang diperoleh dibandingkan dengan kaedah sedia ada dalam maklumat
saintifik. Perbandingan tersebut menunjukkan kaedah yang yang baharu ini adalah
lebih efektif dan cekap berbanding kaedah sedia ada dengan peringkat yang sama.
Kata kunci: Kaedah hibrid; masalah berayun;
penyelesaian berayun; penyuaian trigonmetri; serakan
REFERENCES
Ahmad, S.Z., Ismail, F., Senu, N. & Suleiman, M. 2013.
Zero-dissipative phase-fitted hybrid method for solving oscillatory second
order ordinary differential equations. Applied Mathematics and Computation 219(19):
10096-10104.
Al-Khasawneh, R.A., Ismail, F. & Suleiman, M. 2007.
Embedded diagonally implicit Runge–Kutta–Nyström 4(3) pair for
solving special second-order IVPs. Applied Mathematics and Computation 190(2):
1803-1814.
Butcher, J.C. 2008. Numerical Methods for Ordinary
Differential Equations. New York: John Wiley & Sons.
Coleman, J.P. 2003. Order conditions for a class of two-step
Methods for y′′ = f (x, y). IMA
Journal of Numerical Analysis 23(2): 197-220.
Dizicheh, A.K., Ismail, F., Md. Arifin, N. & Abu Hassan,
M. 2012. A class of two-step hybrid trigonometrically fitted explicit
Numerov-type method for second-order IVPs. Acta Comptare 1: 182-192.
Dormand, J.R., El-Mikkawy, M.E.A. & Prince, P.J. 1987.
High-order embedded Runge-Kutta- Nystrom formulae. IMA Journal of Numerical
Analysis 7(4): 423-430.
Fang, Y. & Wu, X. 2007. A trigonometrically fitted
explicit hybrid method for the numerical integration of orbital problems. Applied
Mathematics and Computation 189(1): 178-185.
Franco, J.M. 2006. A class of explicit two-step hybrid
methods for second-order IVPs. Journal of Computational and Applied
Mathematics 187(1): 41-57.
Ramos, H. & Vigo-Aguiar, J. 2010. On the frequency
choice in trigonometrically fitted methods. Applied Mathematics Letters 23:
1378-1381.
Ming, Q., Yang, Y. & Fang, Y. 2012. An Optimized
Runge-Kutta Method for the Numerical Solution of the Radial Schrödinger
Equation. Mathematical Problems in Engineering 2012: Article ID 867948.
Mohamad, M., Senu, N., Suleiman, M. & Ismail, F. 2012.
Fifth order explicit Runge-Kutta-Nyström methods for periodic initial value
problems. World of Applied Sciences Journal 17: 16-20.
Senu, N., Suleiman, M., Ismail, F. & Othman, M. 2010.
Kaedah pasangan 4(3) Runge-Kutta-Nyström untuk masalah nilai awal berkala. Sains
Malaysiana 39(4): 639-646.
Senu, N., Suleiman, M. & Ismail, F. 2009. An embedded
explicit Runge–Kutta–Nyström method for solving oscillatory
problems. Physica Scripta 80(1): 015005.
Simos, T.E. 2012. Optimizing a hybrid two-step method for
the numerical solution of the Schrödinger equation and related problems with
respect to phase-lag. Journal of Applied Mathematics 2012: Article ID
420387.
Simos, T.E. 2002. Exponentially-fitted Runge-Kutta-Nyström
method for the numerical solution of initial value problems with oscillating
solutions. Applied Mathematics Letters 15(2): 217-225.
Simos, T.E. 1999. Explicit eighth order methods for the
numerical integration of initial-value problems with periodic or oscillating
solutions. Computer Physics Communications 119(1): 32-44.
Tsitouras, Ch. 2002. Explicit two-step methods for
second-order linear IVPs. Computers & Mathematics with Applications 43(8):
943-949.
Van der Houwen, P.J. & Sommeijer, B.P. 1987. Explicit
Runge- Kutta (-Nyström) methods with reduced phase errors for computing
oscillating solutions. SIAM Journal on Numerical Analysis 24(3):
595-617.
Van de Vyver, H. 2005. A Runge-Kutta Nyström pair for the
numerical integration of perturbed oscillators. Computer Physics
Communications 167(2): 129-142.
Vanden Berghe, G., Ixaru L.G. & Van Daele, M. 2001.
Optimal implicit exponentially fitted Runge-Kutta methods. Computational
Physics Comm. 140: 346-357.
Yusuf Dauda Jikantoro. 2014. Numerical solution of special
second initial value problems by hybrid type methods. MSc Thesis, Universiti
Putra Malaysia (Unpublished).
*Corresponding
author; email: fudziah_i@yahoo.com.my
|