Sains Malaysiana 44(4)(2015): 613–618

 

Understanding Pore Formation and Structural Deformation in Carbon Spheres During KOH Activation

(Memahami Pembentukan Liang dan Penyahbentukan Struktur Sfera Karbon Semasa Pengaktifan KOH)

 

M.S. MUSA1, M.M. SANAGI1,2*, H. NUR2 & W.A.WAN IBRAHIM1

 

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

 

2Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

 

Received: 18 August 2014/Accepted: 30 October 2014

 

ABSTRACT

Carbon spheres (CSs) were synthesized from sucrose by hydrothermal reaction. The synthesized materials were further activated with potassium hydroxide (KOH) at different concentrations. The effects of KOH concentration on the surface area and morphology were investigated. The route for pore formation and structural deformation in carbon spheres during activation has been proposed and discussed based on micrographs and porosity trends. It was suggested that the pore formation and structural deformation phenomena were due to the intercalating power of energized K+ into the carbon. This work provides an insight of the pore formation in carbon spheres for the development of adsorbents as well as for the understanding of the structural deformation of such materials at higher KOH concentrations.

 

Keywords: Carbon spheres; hydrothermal reaction; KOH activation; morphology; surface area

 

ABSTRAK

Sfera karbon (CSs) telah disintesis daripada sukrosa dengan tindak balas hidroterma. Bahan yang telah disintesis telah diaktifkan dengan kalium hidroksida (KOH) pada kepekatan berbeza. Kesan kepekatan KOH terhadap luas permukaan dan morfologi telah dikaji. Laluan bagi pembentukan liang dan penyahbentukan struktur sfera karbon semasa pengaktifan telah dicadang dan dibincangkan berdasarkan mikrograf dan tren keliangan. Dicadangkan iaitu fenomena pembentukan liang dan penyahbentukan struktur tersebut adalah disebabkan oleh kuasa tujahan K+ yang bertenaga ke dalam karbon. Kerja ini memberikan penerangan tentang pembentukan liang di dalam sfera karbon bagi pembangunan bahan penjerap dan juga pemahaman tentang penyahbentukan struktur bahan berkenaan pada kepekatan KOH yang tinggi.

 

Kata kunci: Luas permukaan; morfologi; pengaktifan KOH; sfera karbon; tindak balas hidroterma

REFERENCES

Deshmukh, A.A., Mhlanga, S.D. & Coville, N.J. 2010. Carbon spheres. Material Science and Engineering Reports 70: 1-28.

Frykstrand, S., Forsgren, J., Mihranyan, A. & Strømme, M. 2014. On the pore forming mechanism of Upsalite, a micro-and mesoporous magnesium carbonate. Microporous and Mesoporous Materials 190: 99-104.

Hu, B., Yu, S., Wang, K., Liu, L. & Xu, X. 2008. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions 40: 5414-5423.

Inagaki, M. & Tanaike, O. 2001. Determining factors for the intercalation into carbon materials from organic solutions. Carbon 39: 1083-1090.

Li, M., Li, W. & Liu, S. 2011. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydrate Research 346: 999-1004.

Lillo-Ro´Denas, M.A., Cazorla-Amoro´S, D. & Linares-Solano, A. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41: 267-275.

Lowell, S., Shields, J.E., Thomas, M.A. & Thommes, M. 2004. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. 4th ed. Dordrecht: Springer Publishers.

Lozano-Castello, D., Lillo-Ródenas, M.A., Cazorla-Amorós, D. & Linares-Solano, A. 2001. Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon 39: 741-749.

Niwase, K., Homae, T., Nakamura, K.G. & Kondo, K. 2002. Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chemical Physics Letters 362: 47-50.

Okuno, H., Grivei, E., Fabry, F., Grunberger, T.M., Gonzalez- Aguilar, J., Palnichenko, A., Fulcheri, L., Probst, N. & Charlier, J.C. 2004. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42: 2543-2549.

Qian, H., Han, F., Zhang, B., Guo, Y., Yue, J. & Peng, B. 2004. Non-catalytic CVD preparation of carbon spheres with a specific size. Carbon 42: 761-766.

Qiao, W.M., Song, Y., Lim, S.Y., Hong, S.H., Yoon, S.H., Mochida, I. & Imaoka, T. 2006. Carbon nanospheres produced in an arc-discharge process. Carbon 44: 187-190.

Raymundo-Piñero, E., Azaïs, P., Cacciaguerra, T., Cazorla- Amorós, D., Linares-Solano, A. & Béguin, F. 2005. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43: 786-795.

Sevilla, M. & Fuertes, A.B. 2009. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonizaon of saccharides. Chemistry A European Journal 15(16): 4195-4203.

Wang, Q., Li, H., Chen, L. & Huang, X. 2001. Monodispersed hard carbon spherules with uniform nanopores. Carbon 39: 2211-2214.

 

 

*Corresponding author; email: marsin@kimia.fs.utm.my

 

 

 

previous