Sains Malaysiana
44(5)(2015): 701–706
New Lipase Producing
β-proteobacteria Strains Caldimonas sp. and
Tepidimonas sp. Isolated from a Malaysian Hot Springs
(Lipase Baharu yang
Dihasilkan oleh β-proteobakteria Caldimonas sp.
and Tepidimonas sp. Dipencilkan daripada Kolam Air
Panas di Malaysia)
SHARUL AZIM MOHD GHAZALI & TENGKU HAZIYAMIN TENGKU ABDUL HAMID*
Department
of Biotechnology, Kulliyyah of Science,International Islamic University
Malaysia
Kuantan
Campus, Jalan Istana, Bandar Indera Mahkota ,25200 Kuantan, Pahang Darul Makmur
Malaysia
Received:
18 April 2013/Accepted: 13 January 2015
ABSTRACT
Microbial lipolytic
enzymes have attracted considerable attention owing to their biotechnological
potential. In this study, thermophilic bacteria producing lipase were isolated
from Bentong and Sungai Lembing hot springs, in Pahang, Malaysia. Out of 25
colonies isolated, 14 samples showed to produce clear zones surrounding the
growth on tributyrin and trioelin agar plates. All 14 isolates showed
Gram-negative bacteria with short rod morphology. PCR amplification of 16S ribosomal DNA gene showed that these isolates were clustered with subclass
β-proteobacteria consisting of thermophilic bacteria that produce lipase.
Phylogenetic analysis was carried out with the highly similar species and 4
isolates (SglA1, BtnC1, BtnC2 and BtnC3) are related to genus Caldimonas and 10 isolates (SglB1, SglB2, SglB3, SglB4, BtnB1,
BtnB2 BtnD1, BtnD2, BtnD3 and BtnD4) belonged to genus Tepidimonas.
These results indicated that novel lipase-producing thermophilic
β-proteobacteria could be isolated from these hot springs.
Keywords: β-proteobacteria; hot spring; slightly
thermophilic; thermostable lipase
ABSTRAK
Enzim lipolisis daripada
mikrob telah menerima banyak perhatian kerana potensinya dalam
bidang bioteknologi. Dalam kajian ini, bakteria termofili yang
menghasilkan lipase telah dipencilkan daripada kolam air panas
Bentong dan Sungai Lembing di Pahang, Malaysia. Daripada 25 sampel
pencilan, sebanyak 14 pencilan telah menunjukkan kehadiran zon-zon
cerah sekitar koloni yang hidup di atas plat-plat agar tributirin
dan triolein. Kesemua pencilan ini menunjukkan kehadiran bakteria
Gram negatif yang memiliki morfologi rod pendek. Hasil amplifikasi
DNA secara PCR
pada gen 16S ribosom, pencilan ini didapati tergolong
dalam kumpulan β-proteobakteria, yang menghasilkan enzim
lipase. Hasil analisis filogenetik menunjukkan 4 pencilan (SglA1,
BtnC1, BtnC2 dan BtnC3) tergolong dalam genus Caldimonas dan 10 lagi pencilan (SglB1,
SglB2, SglB3, SglB4, BtnB1, BtnB2 BtnD1, BtnD2, BtnD3 dan BtnD4)
adalah daripada genus Tepdimonas. Hasil kajian ini menunjukkan
β-proteobakteria yang termofili menghasilkan lipase yang
agak baharu telah dipencilkan daripada kolam-kolam air panas ini.
Kata kunci: β-proteobakteria; kolam air panas; lipase; sedikit
termofili; termostabil
REFERENCES
Albuquerque, L., Rainey, F.A., Nobre, M.F. & da Costa, M.S. 2011.
Schleiferia thermophila gen. nov., sp. nov., a slightly
thermophilicbacteriumofthephylum 'Bacteroidetes' and the
proposal of Schleiferiaceae fam. nov. Int. J. Sys. &
Evol. Microb. 61: 2450-2455.
Albuquerque, L., Tiago, I., Verissimo, A. & da Costa, M.S.
2006. Tepidimonas thermarum sp. nov., a new slightly thermophilic
betaproteobacterium isolated from the Elisenquelle in Aachen and emended
description of the genus Tepidimonas. Syst. Appl. Microbiol. 29:
450-456.
Bouraoui, H., Boukari, I., Touzel, J.P., O' Donohue, M. & Manai,
M. 2010. Caldimonas hydrothermale sp. nov., a novel thermophilic
bacterium isolated from Roman hot bath in south Tunisia. Arch.
Microbiol. 192: 485-491.
Brenner, D.J., Krieg, N.R., Staley, J.T. & Garrity, G.M. 2005.
Bergey's Manual of Systematic Bacteriology. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-and Epsilonproteobacteria.
2nd ed. New York: Springer. p. 1388.
Chaturvedi, M., Singh, M., Chugh, M. Rishi & Kumar Rahul.
2010. Isolation of lipase producing bacteria from oil contaminated soil for the
production of lipase by solid state fermentation using coconut oil cake. International.
J. Biotechnol. Biochem. 6: 585-594.
Chauhan, M. & Garlapati, V.K. 2013. Production and
characterization of a halo-, solvent-, thermo-tolerant alkaline lipase by Staphylococcus
arlettae JPBW-1, isolated from rock salt mine. App. Biochem. &
Biotechnol. 171(6): 1429-1443.
Chen, T.L., Chou, Y.J., Chen, W.M., Arun, B. & Young, C.C.
2006. Tepidimonas taiwanensis sp. nov., a novel
alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10: 35-40.
Chen, W.M., Chang, J.S., Chiu, C.H., Chang, S.C., Chen, W.C. &
Jiang, C.M. 2005. Caldimonas taiwanensis sp. nov., a amylase producing
bacterium isolated from a hot spring. Syst. Appl. Microbiol. 28:
415-420.
de Champdore, M., Staiano, M., Rossi, M. & D' Auria, S. 2007.
Proteins from extremophiles as stable tools for advanced biotechnological
applications of high social interest. J.R. Soc. Interf. 4:
183-191.
Demirjian, D.C., Moris-Varas, F. & Cassidy, C.S. 2001. Enzymes
from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151.
Freitas, M., Rainey, F.A., Nobre, M.F., Silvestre, A.J. & da
Costa, M.S. 2003. Tepidimonas aquatica sp. nov., a new slightly
thermophilic betaproteobacterium isolated from a hot water tank. Syst. Appl.
Microbiol. 26: 376-381.
Goswami, D., Basu, J.K. & De. S. 2013. Lipase applications in
oil hydrolysis with a case study on castor oil: A review. Crit. Rev.
Biotechnol. 33: 81-96.
Hutson,
R.A., Thompson, D.E. & Collins, M.D. 1993. Genetic interrelationships of
saccharolytic Clostridium botulinum types B, E and F and related
clostridia as revealed by small-subunit rRNA gene
sequences. FEMS Microbiol. Lett. 108: 103-110.
Ko,
K.S., Lee, N.Y., Oh, W.S., Lee, J.H., Ki, H.K., Peck, K.R. & Song, J.H.
2005. Tepidimonas arfidensis sp. nov., a novel gram-negative and
thermophilic bacterium isolated from the bone marrow of a patient with leukemia
in Korea. Microbiol. Immunol 49: 785-788.
Kublanov,
I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K.,
Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertle, T. &
Bonch-Osmolovskaya, E.A. 2009. Biodiversity of thermophilic prokaryotes with
hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl.
Env. Microbiol. 75: 286-291.
Madigan,
M.T., Martino, J.M., Bender, K.S., Buckley, D.H., Stahl D.A. & Brock, T.
2013. The foundation of microbiology. Brock Biology of Microorganisms. Boston:
Pearson. p. 136.
Moreira,
C., Rainey, F.A., Nobre, M.F., da Silva, M.T. & da Costa, M.S. 2000. Tepidimonas
ignava gen. nov., sp. nov., a new chemolithoheterotrophic and slightly
thermophilic member of the beta-Proteobacteria. Int. J. Syst. Evol.
Microbiol. 50: 735-742.
Nakatani,
T., Hiratake, J., Yoshikawa, K., Nishioka, T. & Oda, J. 1992. Chemical
inactivation of lipase in organic solvent: A lipase from Pseudomonas aeruginosa TE3285
is more like a typical serine enzyme in an organic solvent than in aqueous
media. Biosci. Biotechnol. Biochem. 56: 1118-1123.
Panigrahi,
A.K., Panda, A.K. & Bisht, S.P.S. 2014. Production and purification of a
thermostable lipase from a hyperactive bacterial isolate Brevibacillus sp.
from Taptapani hot spring, Odisha. Int. J. Pharm. Bio. Sci. 5(4): (B)
320-327.
Podar,
M. & Reysenbach, A. 2006. New opportunities revealed by biotechnological
explorations of extremophiles. Curr. Opin. Biotechnol. 17: 250-255.
Popovic,
N.T., Coz-Rakovac, R. & Strunjak-Perovic, I. 2007. Commercial phenotypic
tests (API 20E) in diagnosis of fish bacteria: A review. Vet. Med. Czech.
52: 49-53.
Saitou,
N. & Nei, M. 1987. The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
Stackebrandt,
E. & Goebel, B.M. 1994. Taxonomic note: A place for DNA-DNA reassociation
and 16S rRNA sequence analysis in the present species definition in
bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.
Szilágyi,
A. & Závodszky, P. 2000. Structural differences between mesophilic,
moderately thermophilic and extremely thermophilic protein subunits: Results of
a comprehensive surve. Structure 8: 494-504.
Takeda,
M., Kamagata, Y., Ghiorse, W.C., Hanada, S. & Koizumi, J. 2002. Caldimonas
manganoxidans gen. nov., sp. nov., a poly(3-hydroxybutyrate) degrading,
manganese-oxidizing thermophile. Int. J. Syst. Evol. Microbiol. 52:
895-900.
Tamura,
K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: Molecular evolutionary
genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:
1596-1599.
Tirawongsaroj,
P., Sriprang, R., Harnpicharnchai, P., Thongaram, T., Champreda, V.,
Tanapongpipat, S., Pootanakit, K. & Eurwilaichitr, L. 2008. Novel
thermophilic and thermostable lipolytic enzymes from a Thailand hot spring
metagenomic library. J. Biotechnol. 133: 42-49.
Verma,
N., Thakur, S. & Bhatt, A.K. 2012. Microbial lipases: Industrial
applications and properties (A Review). Int. Res. J. Biological Sci. 1:
88-92.
Willems,
A., Deley, J., Gillis, M. & Kersters, K. 1991. Notes: Comamonadaceae,
a new family encompassing the Acidovorans ribosomal-RNA complex, including Variovorax
paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis
1969). Int. J. Syst. Bacteriol. 41: 445-450.
*Corresponding author; email: haziyamin@iium.edu.my