Sains Malaysiana 45(10)(2016): 1453–1459

 

Determination of Polycyclic Aromatic Hydrocarbons in Beverage by Low Density Solvent Based-Dispersive Liquid-Liquid Microextraction-High Performance Liquid Chromatography-Fluorescence Detection

(Penentuan Hidrokarbon Polisiklik Aromatik dalam Minuman dengan Pengekstrakan Cecair-Cecair Serakan Berdasarkan Pelarut Berketumpatan Rendah-Kromatografi Cecair Prestasi Tinggi-Pengesanan Pendarfluor)

 

SAW HONG LOH1,2*, YU TING CHONG1, KHAIRUN NISA NOR AFINDI1 & NORSHIMA ABDULLAH KAMARUDDIN1

 

1School of Marine and Environmental Sciences, Universiti Malaysia Terengganu

21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

2Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

Received: 17 August 2015/Accepted: 16 February 2016

 

ABSTRACT

A simple and fast dispersive liquid-liquid microextraction (DLLME) technique using organic solvent lighter than water has been developed for the extraction of selected polycyclic aromatic hydrocarbons in green tea, chrysanthemum tea and coffee beverage. The 1-octanol and acetonitrile were pre-mixed and injected into the sample solution. After dispersing, the cloudy solution was subjected to centrifugation to separate the solution into 2 phases, where the micro-droplet of 1-octanol was clearly floated on the top layer. The 1-octanol extract was then diluted and injected into high performance liquid chromatography-fluorescence for the quantitative analysis. The technique offered rapid analysis as the 1-octanol was homogeneously dispersed in the sample solution thus speeding the analytes diffusion. Under the optimized extraction conditions, the technique achieved trace detection limits in the range of 0.001 to 0.3 μgL-1 for the targeted analytes, namely phenanthrene, fluoranthene and benzo[a]pyrene. The method was successfully applied to the spiked green tea, chrysanthemum tea and coffee beverage samples with good average relative recoveries obtained in the range of 86.7 to 103.0%. The utilization of low density organic solvent as extraction solvent has allowed for easier operation and eliminated the use of hazardous halogenated solvent that is commonly applied in DLLME.

 

Keywords: Beverage; dispersive liquid-liquid microextraction; high performance liquid chromatography-fluorescence detection; low density solvent; polycyclic aromatic hydrocarbons

 

ABSTRAK

Suatu teknik pengekstrakan cecair-cecair serakan (DLLME) yang mudah dan cepat menggunakan pelarut organik berketumpatan lebih rendah daripada air telah dibangunkan untuk mengekstrak hidrokarbon polisiklik aromatik terpilih dalam minuman teh hijau, teh kekwa dan kopi. 1-oktanol dan asetonitril dipracampur dan disuntik ke dalam larutan sampel. Selepas penyerakan, larutan yang kabur tertakluk kepada pengemparan untuk mengasingkan larutan kepada 2 fasa, dengan titisan mikro 1-oktanol terapung dengan jelas pada lapisan atas. Ekstrak 1-oktanol seterusnya dicairkan dan disuntik ke dalam kromatografi cecair prestasi tinggi-pendarfluor untuk analisis kuantitatif. Teknik ini menawarkan analisis yang cepat kerana 1-oktanol diserakkan dengan homogen dalam larutan sampel yang seterusnya mempercepatkan resapan analit. Dalam keadaan pengekstrakan yang optima, teknik ini mencapai had pengesanan dalam lingkungan 0.001 to 0.3 μgL-1 untuk analit sasaran, iaitu fenantrena, fluorantena dan benzo[a]pirena. Kaedah ini berjaya diaplikasikan kepada sampel minuman teh hijau, teh kekwa dan kopi yang dipakukan dengan analit sasaran dengan perolehan semula purata yang baik dalam lingkungan 86.7 to 103.0%. Penggunaan pelarut organik berketumpatan rendah telah membolehkan operasi yang lebih mudah dan menyingkirkan penggunaan pelarut berhalogen yang berbahaya dan biasa digunakan dalam DLLME.

 

Kata kunci: Hidrokarbon polisiklik aromatik; kromatografi cecair prestasi tinggi-pengesanan pendarfluor; minuman; pelarut berketumpatan rendah; pengekstrakan cecair-cecair serakan

REFERENCES

Asensio-Ramos, M., Ravelo-Pérez, L.M., González-Curbelo, M.A. & Hernández-Borges, J. 2011. Liquid phase microextraction applications in food analysis. J. Chromatogr. A 1218: 7415-7437.

Bishnoi, N.R., Mehta, U., Sain, U. & Pandit, G.G. 2005. Quantification of polycyclic aromatic hydrocarbons in tea and coffee samples of Mumbai City (India) by high performance liquid chromatography. Environ. Monit. Assess. 107: 399-406.

Bjorseth, A. & Ramdahl, T. 1985. Handbook of Polycyclic Aromatic Hydrocarbon Volume 2: Sources and Emission of PAH. New York and Basel: Marcel Dekker.

European Union. 2006. Commission Regulation (CE) No 208/2005. http://eurlex.europa.eu/LexUriServ/LexUriServ.

do?uri=OJ:L:2005:034:0003:0005:EN:PDF. Accessed on 14 February 2016.

Farajzadeh, M.A., Bahram, M., Vardast, M.R. & Bamorowat, M. 2011. Dispersive liquid-liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography-ultraviolet detection and its optimization by experimental design. Microchim. Acta 172: 465-470.

Fledler, H., Cheung, C.K. & Wong, M.H. 2002. PCDD/PCDF, chlorinated pesticides and PAH in Chinese teas. Chemosphere 46: 1429-1433.

Garcia-Falcon, M.S., Cancho-Grande, B. & Simal-Gandara, J. 2005. Minimal clean-up and rapid determination of polycyclic aromatic hydrocarbons in instant coffee. Food. Chem. 90: 643-647.

Han, Y., Jia, X., Liu, X., Duan, T. & Chen, H. 2010. DLLME combined with GC-MS for the determination of methylparaben, ethylparaben, propylparaben and butylparaben in beverage samples. Chromatographia 72: 351-355.

Houessou, J.K., Maloug, S., Leveque, A.S., Delteil, C., Heyd, B. & Camel, V. 2007. Effect of roasting conditions on the polycyclic aromatic hydrocarbon content in ground Arabica coffee and coffee brew. J. Agric. Food Chem. 55: 9719-9726.

Jahromi, E.H., Bidari, A., Assadi, Y., Milani Hosseini, M.R. & Jamali, M.R. 2007. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: Ultra trace determination of cadmium in water samples. Anal. Chim. Acta 585: 305-311.

Kayali-Sayadi, M.N., Rubio-Barroso, S., Cuesta-Jimenez, M.P. & Polo-Diez, L.M. 1998. Rapid determination of polycyclic aromatic hydrocarbons in tea infusion samples by high-performance liquid chromatography and fluorimetric detection based on solid-phase extraction. Analyst 123: 2145-2148.

Lai, J.P., Niessner, R. & Knopp, D. 2004. Benzo[a]pyrene imprinted polymers: Synthesis, characterization and SPE application in water and coffee samples. Anal. Chim. Acta 522: 137-144.

Leong, M.I. & Huang, S.D. 2008. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J. Chromatogr. A 1211: 8-12.

Lin, D., Zhu, L., He, W. & Tu, Y. 2006. Tea plant uptake and translocation of PAHs from water and around air. J. Agric. Food Chem. 54: 3658-3662.

Lin, D., Tu, Y. & Zhu, L. 2005. Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food Chem. Toxicol. 43: 41-48.

Liu, H.H. & Dasgupta, P.K. 1996. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem. 68: 1817-1821.

Liu, Y., Zhao, E., Zhu, W., Gao, H. & Zhou, Z. 2009. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. J. Chromatogr. A 1216: 885-891.

Loh, S.H., Sanagi, M.M., Wan Ibrahim, W.A. & Hasan, M.N. 2013. Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta 106: 200-205.

Majors, R.E. 2013. Trends in sample preparation. LC GC North America 31(3). http://www.chromatographyonline.com/ trends-sample-preparation. Accessed on 9 July 2015.

Meharg, A.A., Dyke, W.H. & Osborn, D. 1998. Polycyclic aromatic hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environ. Pollut. 99: 29-36.

Ratola, N., Alves, A., Kalogerakis, N. & Psillakis, E. 2008. Hollow-fibre liquid-phase microextraction: A simple and fast cleanup step used for PAHs determination in pine needles. Anal. Chim. Acta 618: 70-78.

Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S. 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116: 1-9.

Sadowska-Rociek, A., Surma, M. & Cieślik, E. 2014. Comparison of different modifications on QuEChERS sample preparation method for PAHs determination in black, green, red and white tea. Environ. Sci. Pollut. Res. 21: 1326-1338.

Sanagi, M.M., Loh, S.H., Wan Ibrahim, W.A., Hasan, M.N. & Aboul Enein, H.Y. 2013. Determination of polycyclic aromatic hydrocarbons in fresh milk by hollow fiber liquid-phase microextraction- gas chromatography mass spectrometry. J. Chromatogr. Sci. 51: 112-116.

Simonich, S.T. & Hites, R.A. 1995. Organic pollutant accumulation in vegetation. Environ. Sci. Technol. 29: 2905-2913.

Tuteja, G., Rout, C. & Bishnoi, N.R. 2011. Quantification of polycyclic aromatic hydrocarbons in leafy and underground vegetables: A case study around Panipat City, Haryana, India. J. Environ. Sci. Technol. 4: 611-620.

Viñas, P., Campillo, N., Aguinaga, N., Pérez-Cánovas, E. & Hernández-Córdoba, M. 2007. Use of headspace solid-phase microextraction coupled to liquid chromatography for the analysis of polycyclc aromatic hydrocarbons in tea infusions. J. Chromatogr. A 1164: 10-17.

Wen, X., Yang, Q., Yan, Z. & Deng, Q. 2011. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid-microextraction combined with UV-Vis spectrophotometry. Microchemical Journal 97: 249-254.

Wu, L., Song, Y., Hu, M., Zhang, H., Yu, A., Yu, C., Ma, Q. & Wang, Z. 2015. Application of magnetic solvent bar liquid-phase microextraction for determination of organophosphorus pesticides in fruit juice samples by gas chromatography mass spectrometry. Food Chem. 176: 197-204.

Yamini, Y., Faraji, M. & Ghambarian, M. 2015. Hollow-fiber liquid-phase microextraction followed by gas chromatography flame ionization detection for the determination of amitraz in honey and water samples. Food Anal. Methods 8: 758-766.

Yan, H., Wang, H., Qin, X., Liu, B. & Du, J. 2011. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater. J. Pharm. Biomed. Anal. 54: 53-57.

Zang, X.H., Wu, O.H., Zhang, M.Y., Xi, G.H. & Wang, Z. 2009. Developments of dispersive liquid-liquid microextraction technique. Chinese J. Anal. Chem. 37: 161-168.

Zarei, A.R., Mardi, K. & Dehghani, H. 2012. A miniaturized preconcentration method based on dispersive liquid-liquid microextraction for the spectrophotometric determination of aziridine in food simulants. Food Anal. Methods 5: 1398- 1403.

Zuin, V.G., Montero, L., Bauer, C. & Popp, P. 2005. Stir bar sorptive extraction and high-performance liquid chromatohraphy-fluorescence detection for the determination of polycyclic aromatic hydrocarbon in mate teas. J. Chromatogr. A 1091: 2-10.

 

 

*Corresponding author; email: lohsh@umt.edu.my

 

 

 

 

previous