Sains Malaysiana 45(10)(2016): 1557–1563
A Univariate Rational Quadratic Trigonometric
Interpolating Spline to Visualize
Shaped Data
(Suatu Nisbah Kuadratik Trigonometri Univariat
Menginterpolasikan Splin untuk Menggambarkan Data Berbentuk)
UZMA BASHIR1*
& JAMALUDIN MD. ALI2
1Lahore College
for Women University, Lahore, Pakistan
2School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang
Malaysia
Received: 21 March
2015/Accepted: 25 February 2016
ABSTRACT
This study was concerned with
shape preserving interpolation of 2D data. A piecewise C1
univariate rational quadratic trigonometric spline including three
positive parameters was devised to produce a shaped interpolant
for given shaped data. Positive and monotone curve interpolation
schemes were presented to sustain the respective shape features
of data. Each scheme was tested for plentiful shaped data
sets to substantiate the assertion made in their construction.
Moreover, these schemes were compared with conventional shape
preserving rational quadratic splines to demonstrate the usefulness
of their construction.
Keywords: Continuity; interpolation;
rational trigonometric spline; shape preserving
ABSTRAK
Kajian ini adalah berkaitan
dengan pemeliharaan bentuk interpolasi data 2D. Suatu cebisan
splin nisbah kuadratik trigonometri univariat termasuk tiga
parameter positif dirangka untuk menghasilkan interpolasi
yang terbentuk daripada bentuk data yang diberikan. Skim lengkung
interpolasi positif dan berekanada dibentangkan bagi mengekalkan
ciri bentuk data masing-masing. Setiap skim diuji daripada
banyak bentuk set data untuk menyokong kenyataan yang dibuat
pembinaan berdasarkan skim tersebut. Selain itu, skim ini
dibandingkan dengan bentuk konvensional splin nisbah kuadratik
untuk menunjukkan kegunaan pembinaannya.
Kata kunci: Interpolasi; keselanjaran; pemeliharaan bentuk; splin
nisbah trigonometri
REFERENCES
Akima, H. 1970.
A new method of interpolation and smooth curve fitting based
on local procedures. Journal of the ACM 17(4): 589-602.
Bashir, U. &
Ali, J.M. 2013. Data visualization using rational trigonometric
spline. Journal of Applied Mathematics 2013: Article
ID. 531497.
Bashir, U., Abbas,
M. & Ali, J.M. 2013. The G2 and C2 rational
quadratic trigonometric Bézier curve with two shape parameters
with applications. Applied Mathematics and Computation
219(20): 10183-10197.
Fritsch, F.N. &
Carlson, R.E. 1980. Monotone piecewise cubic interpolation.
SIAM Journal on Numerical Analysis 17(2): 238-246.
Gerald, C.F. &
Wheatley, P.O. 2003. Applied Numerical Analysis. 7th
ed. Boston: Addison-Wesley Publishing Company.
Goodman, T. 2001.
Shape preserving interpolation by curves. Proceedings of
Algorithms for Approximation IV. United Kingdom: University
of Huddersfield. pp. 24-35.
Hussain, M.Z.,
Sarfraz, M. & Hussain, M. 2010. Scientific data visualization
with shape preserving C1 rational cubic interpolation. European
Journal of Pure and Applied Mathematics 3(2): 194-212.
Hussain, M.Z.,
Ayub, N. & Irshad, M. 2007. Visualization of 2D data by
rational quadratic functions. Journal of Information and
Computing Science 2(1): 17-26.
Hussain, M.Z. &
Ali, J.M. 2006. Positivity-preserving piecewise rational cubic
interpolation. MATEMATIKA 22(2): 147-153.
Ibraheem, F., Hussain,
M., Hussain, M.Z. & Bhatti, A.A. 2012. Positive data visualization
using trigonometric function. Journal of Applied Mathematics
2012: Article ID. 247120.
Kvasov, B.I. 2000.
Methods of Shape Preserving Spline Approximation. Singapore:
World Scientific Publishing Co.
Pan, Y.J. &
Wang, G.J. 2007. Convexity preserving interpolation of trigonometric
polynomial curves with a shape parameter. Journal of Zhejiang
University Science A 8(8): 1199-1209.
Sarfraz, M., Hussain,
M.Z. & Hussain, M. 2012. Shape preserving curve interpolation.
International Journal of Computer Mathematics 89(1):
35-53.
Sarfraz, M. &
Hussain, M.Z. 2006. Data visualization using rational spline
interpolation. Journal of Computational and Applied Mathematics
189(1): 513-525.
Sarfraz, M. 2002.
Visualization of positive and convex data by a rational cubic
spline interpolation. Information Sciences 146(1):
239-254.
Schmidt, J. &
Hess, W. 1987. Positive interpolation with rational quadratic
splines. Computing 38(3): 261-267.
Schumaker, L.I.
1983. On shape preserving quadratic spline interpolation.
SIAM Journal on Numerical Analysis 20(4): 854-864.
Zhu, Y., Han, X.
& Han, J. 2012. Quartic trigonometric Bézier curves and
shape preserving interpolation curves. Journal of Computational
Information Systems 8(2): 905-914.
*Corresponding author; email: missheikh92@gmail.com