Sains Malaysiana 45(11)(2016): 1635–1640

 

Experimental Determination of Flow Patterns and Water Holdup of Low Viscosity Oil-Water System in Horizontal Pipes

(Penentuan Secara Uji Kaji Corak Aliran dan Air Tertahan bagi Sistem Minyak Berkelikatan Rendah-Air di dalam Paip Mendatar)

 

M.D.U. ONUOHA1, I. ISMAIL2*, A.S. ISMAIL2 & M.F. MANSOR2

 

1Offshore Oil and Gas Research Center, College of Mechanical and Oil & Gas Transportation Engineering, China University of Petroleum Beijing, #18 Fuxue Road Changping, Beijing, 102249, P. R. China

 

2UTM-MPRC Institute for Oil and Gas, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 3 March 2014/Accepted: 21 March 2016

 

ABSTRACT

Fluids with different properties would exhibit different flow behaviour in any multiphase flow system at a given operating condition. Therefore, an in-depth knowledge of the operational and flow behaviour of any known fluid properties in a multiphase flow system of either liquid-liquid two-phase flow (oil and water) or gas-liquid-liquid three-phase flow (gas, oil and water) would be helpful in designing of pipelines and optimization of the production, separation, transportation and distribution systems, as may be found in oil and gas and allied petro-chemical industries. This paper presents the experimental observation of the flow patterns and water holdup for a two-phase low viscosity oil-water flow in horizontal pipes. The test fluids comprised of tap water and 2D-diesel which has a density of 832 kg/m3, viscosity of 3.24 mPa.s, surface tension of 0.030 N/m and flash point of 79°C. A total of 30 runs has been accomplished and the experimental results showed three different flow patterns identified as stratified flow (ST), stratified flow with mixing interface (ST&MI) and water-in-oil dispersed flow (), with superficial velocities of oil and water in the ranges of 0.32 - 0.87 m/s (Vos) and 0.20 - 0.90 m/s (Vws), respectively. However, analysis of water holdup in the commingled flows of the test fluids showed its dependency on the fluid flow patterns and superficial velocity of water.

 

Keywords: Dispersed flow; flow pattern; low viscosity oil; two phase flow; water holdup

 

ABSTRAK

Bendalir dengan sifat yang berlainan memberikan tingkah laku aliran yang berbeza dalam sebarang sistem aliran pelbagai fasa bagi suatu keadaan operasi yang diberi. Oleh yang demikian, pengetahuan yang mendalam tentang operasi dan tingkah laku aliran bagi sebarang sifat bendalir yang diketahui dalam suatu sistem aliran pelbagai fasa, sama ada aliran dua fasa cecair-cecair (minyak dan air) atau aliran tiga fasa gas-cecair-cecair (gas, minyak dan air), adalah berguna ketika mereka bentuk talian paip dan pengoptimuman sistem pengeluaran, pemisahan, pengangkutan dan penghantaran dalam industri minyak dan gas serta industri kimia. Kertas ini mengetengahkan pemerhatian secara uji kaji terhadap corak aliran dan air tertahan bagi aliran dua fasa minyak berkelikatan rendah-air di dalam paip mendatar. Bendalir kajian terdiri daripada air paip dan diesel-2D dengan ketumpatan 832 kg/m3, kelikatan 3.24 mPa.s, tegangan permukaan 0.030 N/m dan takat kilat 79°C. Sebanyak 30 uji kaji telah dijalankan dengan hasilnya menunjukkan tiga jenis corak aliran telah dikenal pasti. Corak aliran terbabit ialah aliran berstrata (ST), aliran berstrata dengan percampuran antara muka (ST&MI) dan aliran terserak air dalam minyak (Dw/o), dengan halaju pada permukaan minyak dan air masing-masing dalam julat 0.32 - 0.87 m/s (Vos) dan 0.20 - 0.90 m/s (Vws). Walau bagaimanapun, analisis yang dilakukan terhadap air tertahan dalam aliran tercampur bendalir kajian mendedahkan kebergantungannya kepada corak aliran bendalir dan halaju aliran air.

 

Kata kunci: Air terserak; aliran tertahan; aliran dua fasa; corak aliran; minyak berkelikatan rendah

REFERENCES

Al-Wahaibi, T., Yusuf, N., Al-Wahaibi, Y. & Al-Ajmi, A. 2012. Experimental study on the transition between stratified and non-stratified horizontal oil-water flow. Int. J. Multiphase Flow 38: 126-129.

Atmaca, S., Sarica, C., Zhang, H.Q. & Al-Sarkhi, A.S. 2008. Characterization of oil/water flows in inclined pipes. SPE115485 in: SPE Annual Technical Conference, 21-24 September. Colorado, USA. pp. 1-14.

Brauner, N. & Ullmann, A. 2002. Modeling of phase inversion phenomenon in the two-phase flows. Int. J. of Multiphase Flow 28(7): 1177-1204.

Brauner, N. & Moalem-Maron, D. 1992. Identification of the range of small diameter conduits regarding two-phase flow pattern transitions. Int. Commun. Heat Mass Transfer 19: 29-39.

Brauner, N. & Maron, D.M. 1989. Two phase liquid-liquid stratified flow. Physico. Chemical Hydrodynamics 11(4): 487-506.

Charles, M.E., Govier, G.W. & Hodgson, G.W. 1961. The horizontal pipeline flow of equal density oil-water mixture. Can. J. Chem. Eng. 39: 27-36.

Flores, J.G., Chen, X.T. & Sarica, C. 1999. Characterisation of oil-water flow patterns in vertical and deviated wells. SPE PROD. 14(2): 102-109.

Ismail, A.S.I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M.S. & Sariman, M.Z. 2015. Experimental investigation of oil-water two-phase flow in horizontal pipes: Pressure losses, liquid holdup and flow patterns. J. Pet. Sci. Eng. 127: 409-420.

Melissa, J.M., Randall, G.G. & Clifton, S.S. 2000. Predicting pressure drop gradients in heavy oil-water pipelines. Can. J. Chem. Eng. 78: 752-756.

Moosawy, A.A., Al-Hattab, T.A. & Al-Joubouri, T.A. 2008. Analysis of liquid-liquid two-phase flow system. Emirates Journal for Engineering 13(3): 19-26.

Nädler, M. & Mewes, D. 1997. Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes. Int. J. Multiphase Flow 23(1): 55-68.

Oddie, G., Shi, H., Durlofshy, L.J., Aziz, K., Pfeffer, B. & Holmes, J.A. 2003. Experimental study of two and three phase flows in large diameter inclined pipes. Int. J. Multiphase Flow 29: 527-558.

Russell, T.W.F., Hodgson, G.W. & Govier, G.W. 1959. Horizontal pipeline flow mixture of oil and water. Can. J. Chem. Eng. 37: 9-17.

Trallero, J.L. 1995. Oil-water flow patterns in horizontal pipes. Ph.D. Thesis, University of Tulsa (Unpublished).

Vielma, M., Atmaca, S., Sarica, C. & Zhang, H.Q. 2007. Characterization of oil/water flows in horizontal pipes. SPE 109591 presented at the SPE Annual Technical Conference and Exhibition, Anaheim, U.S.A, 11-14 November.

Vuong, D.H., Zhang, H.Q. & Li, M. 2009. Experimental study on high viscosity oil/water flow in horizontal and vertical pipes. SPE-124542-MS-P presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October.

Wang, W. & Gong, J. 2010. Flow characteristic of the oilfield heavy crude oil-water two phase flow, SPE130850 presented at the SPE International Oil & Gas Conference, Beijing, China, 8-10 June. pp. 1-11.

Xu, J.Y., Wu, Y.X. & Guo, J. 2008. Experimental investigation on the holdup distribution of oil-water two-phase flow in horizontal parallel tubes. Chem. Eng. Technol. 31(10): 1536-1540.

Yao, Y.H., Li, Q.P. & Wang, L. 2009. An experimental investigation on pressure gradients in horizontal heavy oil-water pipe flows. The Nineteenth (2009) International Offshore and Polar Engineering Conference, Osaka, Japan, June 21-26.

Zhang, H.Q., Vuong, D.H. & Sarica, C. 2010. Modeling high-viscosity oil-water flows in horizontal and vertical pipes. SPE135099 presented at the SPE Annual Technical Conference, Florence, Italy, 19-22 September. pp. 1-10.

 

*Corresponding author; email: issham@petroleum.utm.my

 

 

 

 

previous