Sains Malaysiana 45(11)(2016): 1641–1647
Histological Analysis of Motoneuron Survival and Microglia
Inhibition after Nerve Root Avulsion Treated with Nerve Graft
Implantation and Minocycline: An Experimental Study
(Analisis Histologi Kemandirian Motoneuron dan Perencatan
Mikroglia selepas Avulsi Akar Saraf Dirawat dengan Penempelan
Tisu Cantuman dan Minosiklin: Suatu Kajian Eksperimen)
FAIZUL H.
GHAZALI1*, WUTIAN
WU4
& JAFRI M. ABDULLAH1,2,3
1Center for Neuroscience
Service and Research, School of Medical Sciences, Universiti Sains
Malaysia, Kubang Kerian 2, 16150 Kelantan Darul Naim, Malaysia
2Department of Neurosciences,
School of Medical Sciences, Universiti Sains Malaysia
Kubang Kerian 2,
16150 Kelantan Darul Naim, Malaysia
3School of Medical
Sciences, Hospital Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan Darul Naim, Malaysia
4Department of Anatomy,
Faculty of Medicine, University of Hong Kong, China
Received: 8 September
2014/Accepted: 24 March 2016
ABSTRACT
Motor vehicle accidents are
the most common cause of injuries involving avulsion of the brachial
plexus in humans, resulting in debilitating motor dysfunction.
Lack of an established animal model to test drug treatments hinders
the introduction of new pharmacological agents. Avulsion injury
of cervical ventral roots can be replicated in rats, resulting
in a progressive loss of the motoneurons and increase in neurotoxic
expression of microglia. This is a report on the effect of prompt
nerve implantation and minocycline treatment on the suppression
of microglia activation and survival of motoneurons. 20 adult
female Sprague-Dawley rats were used for this study, which was
approved by the Animal Ethical Committee, USM
(approval number /2011/(73)(346)). The animals underwent
surgical avulsion of the C6 nerve root, followed by reimplantation
with peripheral nerve graft and treatment with intraperitoneal
minocycline. At 6 weeks postoperatively, immunohistochemistry
using primary antibody Iba1 (microglia) and nicotinamide adenine
dinucleotide phosphate diaphorase (NADPh)
with neutral-red staining (motoneuron) under flourescence microscopy
was performed at the C6 spinal cord segment and then quantified.
This study showed significant reduction of microglia expression in the study group; mean
ranks of control and study group were 15.2 and 11.6, respectively;
U=9.5, Z=3.02, p<0.05. However, this did not translate
into a significant increase of motoneuron survival in the
combined group; the mean ranks of control and study group were
40.6 and 41.6, respectively; U=44.5, Z=-.0378, p>0.05.
This may be due to the effect of the surgery; the surgery has
the potential to cause additional trauma to the cord parenchyma,
leading to further motoneuron loss and an increase in scarring
around the avulsed region, thus impeding regeneration of the motoneuron.
Keywords: Avulsion; microglia;
minocycline; motoneuron; peripheral nerve implantation
ABSTRAK
Kemalangan kenderaan bermotor
adalah punca paling biasa kecederaan yang melibatkan avulsi pleksus
brakium pada manusia yang mengakibatkan kelemahan fungsi motor.
Kekurangan model haiwan yang mantap untuk menguji rawatan ubat
menghalang pengenalan agen baru farmakologi. Kecederaan avulsi
pangkal rahim ventral akar boleh direplikasi pada tikus yang mengakibatkan
kehilangan motoneuron secara progresif dan peningkatan dalam pengekspresan
neurotoksik mikroglia. Kertas ini membincangkan tentang kesan
implantasi saraf pantas dan rawatan minosiklin ke atas penidasan
pengaktifan mikroglia dan kemandirian motoneuron. 20 tikus dewasa
betina Sprague-Dawley digunakan untuk kajian ini dan telah diluluskan
oleh Jawatan Kuasa Etika Haiwan, USM (nombor kelulusan/2011/(73)(346)).
Tikus tersebut telah menjalani pembedahan avulsi pada akar saraf
C6, diikuti implantasi semula dengan cantuman saraf periferi dan rawatan dengan minosiklin
intraperitoneum. Selepas 6 minggu pascabedah, imunohistokimia
menggunakan antibodi Iba1 utama (mikroglia) dan nikotinamida adenina
dinukleotida fosfat diaforase (NADPh) dengan pewarnaan merah
neutral (motoneuron) di bawah mikroskop berpendarflour telah dijalankan
pada segmen saraf tunjang C6 dan kemudian dikuantitikan. Kajian
ini menunjukkan penurunan pengekspresan mikroglia yang ketara
dalam kumpulan kajian; pangkat min kumpulan kawalan dan kajian
masing-masing adalah 15.2 dan 11.6; U=9.5, Z=3.02,p<0.05. Walau bagaimanapun, ini tidak pula diterjemahkan kepada
pertambahan ketara kemandirian motoneuron dalam kumpulan gabungan;
pangkat min kumpulan kawalan dan kajian masing-masing adalah sebanyak
40.6 dan 41.6; U=44.5, Z=-.0378,p>0.05. Ini mungkin
disebabkan oleh kesan pembedahan; pembedahan tersebut berpotensi
untuk menyebabkan trauma tambahan kepada parenkima tunjang yang
membawa kepada kehilangan motoneuron lebih banyak dan peningkatan
parut di sekitar kawasan avulsi, oleh itu menghalang pertumbuhan
semula motoneuron.
Kata kunci: Avulsi; mikroglia; minosiklin; motoneuron; penempelan
saraf periferi
REFERENCES
Afshari, F.T.,
Kappagantula, S. & Fawcett, J.W. 2009. Extrinsic and intrinsic
factors controlling axonal regeneration after spinal cord injury.
Expert Rev. Mol. Med. 11: e37.
Arvin, K.L., Han, B.H., Du, Y., Lin, S.Z., Paul, S.M. & Holtzman, D.M.
2002. Minocycline markedly protects the neonatal brain against
hypoxic-ischemic injury. Ann. Neurol. 52: 54-61.
Barbizan, R. &
Oliveira, A.L.R. 2010. Impact of acute inflammation on spinal
motoneuron synaptic plasticity following ventral root avulsion
research. Journal of Neuroinflammation 7: 29.
Bergerot, A., Shortland,
P.J., Anand, P., Hunt, S.P. & Carlstedt, T. 2004. Co-treatment
with riluzole and GDNF is necessary for functional recovery after
ventral root avulsion injury. Exp. Neurol. 187(2) 359-366.
Bigbee, A.J., Crown,
E.D., Ferguson, A.R., Roland, R.R., Tillakaratne, N.J., Grau,
J.W. & Edgerton, V.R. 2007. Two chronic motor training paradigms
differentially influence acute instrumental learning in spinally
transected rats. Behav. Brain Res. 180(1): 95-101.
Block, M.L. &
Hong, J.S. 2005. Microglia and inflammation-mediated neurodegeneration:
multiple triggers with a common mechanism. Prog. Neurobiol.
76(2): 77-98.
Carlstedt, T. 2009.
Nerve root replantation. Neurosurg. Clin. N. Am. 20(1):
39-50.
Chew, D.J., Carlstedt,
T. & Shortland, P.J. 2011. A comparative histological analysis
of two models of nerve root avulsion injury in the adult rat.
Neuropathology and Applied Neurobiology 37: 613-632.
Chu, T.H., Li,
S.Y., Guo, A., Wong, W.M., Yuan, Q. & Wu, W. 2009. Implantation
of neurotrophic factor treated sensory nerve graft enhances survival
and axonal regeneration of motoneurons after spinal root avulsion.
J. Neuropathol. Exp. Neurol. 68(1): 94-101.
Havton, L.A. &
Carlstedt, T. 2009. Repair and rehabilitation of plexus and root
avulsions in animal models and patients. Curr. Opin. Neurol.
22(6): 570-574.
Hoang, T.X., Akhavan,
M., Wu, J. & Havton, L.A. 2008. Minocycline protects motor
but not autonomic neurons after cauda equina injury. Exp. Brain
Res. 189(1): 71-77.
Holtzer, C.A.J.,
Marani, E., Lakke, E.A.J.F. & Thomeer, R.T.W.M. 2002. Repair
of ventral root avulsions of the brachial plexus: A review. J.
Peripher. Nerv. Syst. 7(4): 233-242.
Htut, M., Misra,
P., Anand, P., Birch, R. & Carlstedt, T. 2006. Pain phenomena
and sensory recovery following brachial plexus avulsion injury
and surgical repairs. The Journal of Hand Surgery: British
& European Volume 31(6): 596-605.
Koliatsos, V.E.,
Price, W.L., Pardo, C.A. & Price, D.L. 1994. Ventral root
avultion: An experimental model for death of adult motor neurons.
J. Comp. Neurol. 342(1): 35-44.
Kumar, A., Aditi,
V., Kumar, P. & Kalonia, H. 2012. Potential role of licofelone,
minocycline and their combination against chronic fatigue stress
induced behavioral, biochemical and mitochondrial alterations
in mice. Pharmacological Reports 64(5): 1105-1115.
Noguchi, T., Ohta,
S., Kakinoki, R., Kaizawa, Y. & Matsuda, S. 2013. A new cervical
nerve root avulsion model using a posterior extra-vertebral approach
in rats. Journal of Brachial Plexus and Peripheral Nerve Injury
8: 8.
Plane, J.M., Shen,
Y., Pleasure, D.E. & Deng, W. 2010. Prospects for minocycline
neuroprotection. Arch. Neurol. 67(12): 1442-1448.
Scholz, J. &
Woolf, C.J. 2007. The neuropathic pain triad: neurons, immune
cells and glia. Nat. Neurosci. 10: 1361- 1368.
Sharma, V.K., Goyal,
A. & Ganti, S.S. 2010. Minocycline, an antibiotic and a neuroprotective:
Justifying role in Alzheimer’s disease. Asian Journal of Pharmaceutical
and Clinical Research 3(3): 142-145.
Songcharoen, P.
2008. Management of brachial plexus injury in adults. Scand.
J. Surg. 97(4): 317-323.
Stirling, D.P., Khodarahmi, K., Liu, J., McPhail, L.T., McBride, C.B., Steeves,
J.D., Ramer, M.S. & Tetzlaff, W. 2004. Minocycline treatment
reduces delayed oligodendrocyte death, attenuates axonal dieback,
and improves functional outcome after spinal cord injury. J.
Neurosci. 24: 2182-2190.
Su, H., Yuan, Q.,
Qin, D., Yang, X., Wong, W.M., So, K.F. & Wu, W. 2013. Ventral
root re-implantation is better than peripheral nerve transplantation
for motoneuron survival and regeneration after spinal root avulsion
injury. BMC Surgery 13: 21.
Tikka, T.M. &
Koistinaho, J.E. 2001. Minocycline provides neuroprotection against
Nmethyl-D-aspartate neurotoxicity by inhibiting microglia. J.
Immunol. 166(12): 7527-7533.
WHO Drug Information.
1997. Volumne 11, Number 4. Geneva: World Health Organization.
p. 257.
*Corresponding author; email: dr_leyz@yahoo.com