Sains Malaysiana 45(12)(2016):
1779–1785
http://dx.doi.org/10.17576/jsm-2016-4512-01
Mekanisme Pembentukan Apatit pada
Permukaan Sampel β-Wolastonit yang Dihasilkan daripada Abu
Sekam Padi
(Mechanism of Apatite Formation on β-wollastonite
Sample Surface Synthesized from
Rice Husk Ash)
HAMISAH ISMAIL,
ROSLINDA
SHAMSUDIN*,
MUHAMMAD
AZMI
ABDUL
HAMID
& ROZIDAWATI
AWANG
Pusat Pengajian Fizik Gunaan, Fakulti
Sains & Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,
Malaysia
Recieved: 8 October 2015/Accepted:
25 March 2016
ABSTRAK
Mekanisme pembentukan apatit
pada permukaan β-wolastonit dikaji. β-wolastonit dihasilkan
daripada teknik sol-gel menggunakan abu sekam dan batu kapur terkalsin
sebagai bahan pemula dengan nisbah CaO:SiO2 adalah
55:45. Kebioaktifan sampel β-wolastonit dikaji dengan merendam
sampel berbentuk silinder dalam larutan simulasi badan (SBF)
untuk tempoh yang ditetapkan iaitu 1, 3, 7 dan 14 hari. Komposisi
permukaan, morfologi dan perubahan struktur sampel sebelum dan selepas
direndam dianalisis melalui pembelauan sinar-X (XRD) dan mikroskop elektron imbasan
(FESEM) yang digabungkan dengan EDX.
Keputusan XRD menunjukkan fasa β-wolastonit berjaya dihasilkan
selepas dimasukkan ke dalam autoklaf untuk 8 jam pada suhu 135°C
pada tekanan 0.24 MPa dan disinter 2 jam pada suhu 950°C. Apatit
didapati tumbuh pada permukaan sampel β-wolastonit selepas
7 hari rendaman dalam larutan SBF.
Semasa proses rendaman dalam larutan SBF, 2 jenis kumpulan kalsium
fosfat dihasilkan iaitu amorfus kalsium fosfat (ACP)
selepas 3 hari rendaman dengan julat nisbah Ca/P 1.2-2.02 dan pada
hari ke-14 membentuk hidroskiapatit kurang kalsium (CDHA) dengan nisbah Ca/P 1.63.
Perubahan fasa sampel β-wolastonit daripada keadaan hablur
kepada amorfus jelas terbukti daripada keputusan XRD selepas direndam dalam SBF
dengan penurunan puncak keamatan bagi sampel β-wolastonit pada
sudut belauan 30°. Ini mengukuhkan mekanisme pembentukan lapisan
apatit pada permukaan sampel β-wolastonit dan ianya bersifat
bioaktif.
Kata kunci: Abu sekam; apatit;
batu kapur terkalsin; β-wolastonit; kebioaktifan
ABSTRACT
The mechanism of apatite formation
on the β-wollastonite surface was studied. β-wollastonite
was produced using the sol-gel technique from rice husk ash and
calcined limestone as the starting material with CaO:SiO2 ratio
of 55:45. Bioactivity of the β-wollastonite sample was studied
by immersing a cylindrical form sample in a simulation body fluid
solution (SBF)
for a period of 1, 3, 7 and 14 days. Surface composition, morphology
and structural of the sample before and after immersion were analyzed
using X-ray diffraction (XRD) and scanning electron microscope (FESEM)
coupled with EDX. The XRD results showed that β-wollastonite
was successful obtained after autoclaving for 8 h at 135°C, with
pressure at 0.24 MPa and sintered for 2 h at 950°C. Apatite was
found to growth on the surface of β-wollastonite after 7 days
of immersion in the SBF
solution. During immersion in the SBF solution, two types of calcium phosphate
groups were obtained, which is amorphous calcium phosphate (ACP)
after 3 days of immersion with Ca/P ratio in the range of 1.2-2.02
and on the 14th day, calcium deficient hydroxyapatite (CDHA)
is formed with the molar ratio Ca/P 1.63. Phase transformation from
crystalline to an amorphous was clearly been detected from the XRD results
through the decreasing of the peak intensity at 2 theta of 30.00 after
immersing in the SBF. This supports the occurring of apatite
formation mechanism on the β-wollastonite surface and possesses
bioactive property.
Keywords: Apatite; bioactivity; β-wollastonite; calcined limestone;
rice husk ash
REFERENCES
Adam,
F., Jimmy, N.A. & Anwar, I. 2012. The utilization of rice husk
silica as a catalyst: Review and recent progress. Catalysis Today
190: 2-14.
Blanton,
T.N. & Craig, L.B. 2005. Quantitative analysis of calcium oxide
desiccant conversion to calcium hydroxide using X-ray diffraction.
International Centre for Diffraction Data 48: 45-51.
Cölfen,
H. 2010. Biomineralization: A crystal-clear view. Nature Materials
9: 960-961.
Daud,
N.K. & Hameed, B.H. 2010. Decolorization of acid red 1 by fenton-like
process using rice husk ash-based catalyst. Journal of Hazardous
Materials 176: 938-944.
Dorozhkin,
S.V. 2010. Bioceramics of calcium orthophosphates. Biomaterials
31: 1465-1485.
Huang,
X.H. & Chang, J. 2009. Synthesis of nanocrystalline wollastonite
powders by citrate-nitrate gel combustion method. Materials Chemistry
and Physics 115: 1-4.
Ismail,
H., Nizam, J.M. & Abdul Khalil, H.P.S. 2001. The effect of a
compatibilizer on the mechanical properties and mass swell of white
rice husk ash filled natural rubber/linear low density polyethylene
blends. Polymer Testing 20: 125-133.
Jenkins,
B.M., Baxter, L.L., Miles Jr, T.R. & Miles, T.R. 1998. Combustion
properties of biomass. Fuel Processing Technology: 54(1):
17-46.
Kokubo,
T. & Takadama, H. 2006. How useful is SBF in predicting in
vivo bone bioactivity? Biomaterials 27: 2907- 2915.
Kumar,
A., Mohanta, K., Kumar, D. & Parkash, O. 2012. Properties and
industrial applications of rice husk: A review. International
Journal of Emerging Technology and Advanced Engineering 2: 86-90.
Kusbiantoro,
A., Muhd Fadhil, N., Nasir, S. & Sobia, A.Q. 2012. The effect
of microwave incinerated rice husk ash on the compressive and bond
strength of fly ash based geopolymer concrete. Construction and
Building Materials 36: 695-703.
Lee,
T., Radzali, O. & Yeoh, F-Y. 2013. Development of photoluminescent
glass derived from rice husk. Biomass and Bioenergy 59: 380-392.
Li,
P. & Zhang, F. 1990. The electrochemistry of a glass surface
and its application to bioactive glass in solution. Journal of
Non-Crystalline Solids 119: 112-118.
Lin, K., Jiang, C., Ziwei, L., Yi, Z. & Ruxiang, S. 2009. Fabrication
and characterization of 45S5 bioglass reinforced macroporous calcium
silicate bioceramics. Journal of the European Ceramic Society
29: 2937-2943.
Liu, X., Ding, C. & Chu, P.K. 2004. Mechanism of apatite
formation on wollastonite coatings in simulated bodyfluid. Biomaterials
25: 1755-1761.
Mallick, K. 2014.
Bone Substitutes Materials.1st ed. Cambridge: Woodhead publishing
in series biomaterials. Number 78.
Noor Sheeraz, C.Z.,
Ismail, A.R., Dasmawati, M. & Adam, H. 2013. A green sol-gel
route for the synthesis of structurally controlled silica particles
from rice husk for dental composite filler. Ceramics International
39: 4559-4567.
Ramesh, S., Tan,
C.Y., Bhaduri, S.B., Teng, W.D. & Sopyan, I. 2008. Densification
behaviour of nanocrystalline hydroxyapatite bioceramics. Journal
of Materials Processing Technology 206: 221-230.
Rashita, A.R.,
Roslinda, S., Muhammad Azmi, A.H. & Azman, J. 2014. In-vitro
bioactivity of wollastonite materials derived from limestone
and silica sand. Ceramics International 40: 6847-6853.
Shumkova, V.V.,
Pogrebenkov, V.M., Karlov, A.V., Kozik, V.V. & Vereshchagin,
V.I. 2001. Hydroxyapatite-wollastonite bioceramics. Glass and
Ceramics 57: 350-353.
Sopyan, I. &
Jasminder, K. 2009. Preparation and characterization of porous hydroxyapatite
through polymeric sponge method. Ceramics International 35:
3161-3168.
Sunarso, Ahmad
Fauzi, M.N., Shah Rizal, K., Radzali, O., Ika, D.A. & Ishikawa,
K. 2013. Synthesis of biphasic calcium phosphate by hydrothermal
route and conversion to porous sintered scaffold. Journal of
Biomaterials and Nanobiotechnology 04: 273-278.
Umamaheswaran,
K. & Batra, V.S. 2008. Physico-chemical characterisation of
Indian biomass ashes. Fuel 87: 628-638.
Wan, X., Chengkang,
C., Dali, M., Ling, J. & Ming, Li. 2005. Preparation and in
vitro bioactivities of calcium silicate nanophase materials.
Materials Science and Engineering: C 25: 455-461.
Zhao, J.C. 2007.
Methods for Phase Diagram Determination. New York: Elsevier.
Zhao, W. &
Chang, J. 2004. Sol-gel synthesis and in vitro bioactivity
of tricalcium silicate powders. Materials Letters 58(19):
2350-2353.
*Corresponding author; email: linda@ukm.edu.my
|