Sains Malaysiana 45(2)(2016): 305-313
Haar
Wavelet Method for Constrained Nonlinear Optimal Control Problems
with Application to Production Inventory Model
(Kaedah
Gelombang Kecil Haar untuk Masalah Kawalan Optimum Kekangan tak
Linear dengan Model Aplikasi untuk Inventori Pengeluaran)
Waleeda Swaidan12* & Amran Hussin1
1Institute of Mathematical
Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Division of Basic Science, Faculty of Agriculture, University
of Baghdad
Received: 2 February 2015/Accepted:
18 August 2015
Abstract
A new numerical method was proposed in this paper to address
the nonlinear quadratic optimal control problems, with state and
control inequality constraints. This method used the quasilinearization
technique and Haar wavelet operational matrix to convert the nonlinear optimal control problem into a sequence of quadratic
programming problems. The inequality constraints for trajectory
variables were transformed into quadratic programming constraints
using the Haar wavelet collocation method. The proposed method was
applied to optimize the control of the multi-item inventory model
with linear demand rates. By enhancing the resolution of the Haar
wavelet, we can improve the accuracy of the states, controls and
cost. Simulation results were also compared with other researchers'
work.
Keywords: Direct method; Haar
wavelet operational matrix; optimal control; quadratic programming
problem
Abstrak
Kaedah
berangka baru telah dicadangkan dalam kertas ini untuk menangani
masalah kawalan optimum quadratik tak linear dengan kekangan keadaan
serta kawalan ketidaksamaan. Kaedah ini menggunakan teknik quasipelinearan
dan matriks operasi gelombang kecil Haar untuk menukar masalah kawalan
optimum tak linear kepada suatu turutan masalah pengaturcaraan quadratik. Kekangan
ketidaksamaan bagi pemboleh ubah trajektori diubah menjadi kekangan
pengaturcaraan quadratik menggunakan kaedah kolokasi gelombang kecil
Haar. Kaedah cadangan telah digunakan untuk mengoptimumkan kawalan
model inventori item berbilang dengan kadar permintaan linear. Dengan
mempertingkatkan resolusi gelombang kecil Haar, ketepatan keadaan,
kawalan serta kos boleh ditambah baik. Keputusan simulasi juga dibandingkan
dengan hasil penyelidikan lain.
Kata kunci: Kawalan optimum; kaedah langsung; masalah
pengaturcaraan quadratik; matriks operasi gelombang kecil Haar
References
Aziz,
I. & Siraj-ul-Islam. 2013. New algorithms for the numerical
solution of nonlinear Fredholm and Volterra integral equations using
Haar wavelets. Journal of Computational and Applied Mathematics
239: 333-345.
Balkhi, Z.T. & Benkherouf,
L. 2004. On an inventory model for deteriorating items with stock
dependent and time-varying demand rates. Computers and Operations
Research 31(2): 223-240.
Bellman,
R. & Kalaba, R. 1965. Quasilinearization
and Nonlinear Boundary Value Problems.
New York: Elsevier.
Bhatti,
M.A. 2000. Practical Optimization
Methods: With Mathematica Applications. New York: Springer.
Brewer,
J. 1978. Kronecker products and matrix calculus in system theory.
IEEE Transactions on Circuits and Systems CAS-25(9): 772-781.
Chen, C.F. & Hsiao, C.H. 1999. Wavelet approach to optimizing
dynamic systems. In Control
Theory and Applications, IEE Proceedings 146(2):
213-219.
Chen,
C. & Hsiao, H. 1997. Haar wavelet method for solving lumped
and distributed parameter systems. IEE Proceeding on Control
Theory and Application 144(1): 87-94.
Dai,
R. & Cochran, J. 2009. Wavelet collocation method for optimal
control problems. Journal of Optimization theory and Application
143: 265-278.
El-Gohary,
A. & Elsayed, A. 2008. Optimal control of a multi-item inventory
model. International Mathematical Forum 3(27): 1295-1312.
Han,
Z. & Li, S. 2011. A new approach for solving optimal nonlinear
control problems using decriminalization
and rationalized Haar functions. Advanced Engineering Forum
1: 387-394.
Hsiao,
C. & Wu, S. 2007. Numerical solution of time-varying functional
differential equations via Haar wavelets. Applied Mathematics
and Computation 188(1): 1049-1058.
Jaddu,
H. 2002. Direct solution of nonlinear optimal control problems using
quasilinearization and Chebyshev polynomials.
Journal of the Franklin Institute 339: 479-498.
Jaddu,
H. 1998. Numerical Methods for Solving Optimal Control Problems
using Chebyshev Polynomials. PhD. Thesis, School of Information
Science, Japan Advanced Institute of Science and Technology
(Unpublished).
Lancaster,
P. & Tismenetsky, M. 1985. The
Theory of Matrices: With Applications. New York: Academic press.
Marzban,
H. & Razzaghi, M. 2010. Rationalized Haar approach for nonlinear
constrained optimal control problems. Applied
Mathematical Modelling 34(1): 174-183.
Mehra,
R. & Davis, R. 1972. A generalized gradient method for optimal
control problems with inequality constraints and singular arcs.
IEEE Transactions on Automatic Control AC-17: 69-72.
Omar, M. 2012. A replenishment
inventory model for items under time-varying demand rates considering
trade credit period and cash discount for a finite time horizon.
Sains Malaysiana 41(4): 493-497.
Sethi,
S. & Thompson, G. 2006. Optimal
Control Theory. New
York: Springer. pp. 153-184.
Siraj-ul-Islam, Šarler, B., Aziz, I. &
Haq, F. 2011. Haar wavelet collocation
method for the numerical solution of boundary layer fluid flow problems. International Journal of Thermal Sciences 50(5): 686-697.
Siraj-ul-Islam, Aziz, I. & Šarler,
B. 2010. The numerical solution of second-order boundary-value problems
by collocation method with the Haar wavelets. Mathematical and Computer Modelling 52(9-10):
1577-1590.
Swaidan,
W. & Hussin, A. 2013. Feedback control method using Haar wavelet
operational matrices for solving optimal control problems. Abstract
and Applied Analysis 2013: Article ID 240352.
*Corresponding author;
email: waleeda_um@yahoo.com
|