Sains Malaysiana 45(2)(2016): 297-303
Kesan Pempasifan Permukaan Bahan Bukan Organik dan Organik terhadap
Sifat Struktur dan Ciri Elektronik bagi Noktah Kuantum Silikon: Kajian ab-initio
(Inorganic and Organic Surface Passivation Effects on the
Structural and Electronic
Properties of Silicon Quantum Dots: ab-initio Study)
M.M. Anas* & G.
Gopir
Pusat Pengajian Fizik Gunaan, Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan, Malaysia
Received: 2 April 2015/Accepted: 2 July 2015
ABSTRAK
Beberapa siri pengiraan ab-initio telah dijalankan bagi meneliti perubahan
bentuk struktur dan ciri elektronik noktah kuantum silikon berdasarkan
kesan pempasifan bahan bukan organik, hidroksil (OH)
dan bahan organik, metil (CH3). Hasil pengoptimuman geometri
menunjukkan bahawa noktah kuantum yang dipasifkan secara tepu dengan
bahan organik dan bukan organik perlu menjalani proses penstrukturan
semula keadaan permukaan bagi membolehkan pempasifan permukaan tepu
dijalankan tanpa meninggalkan sebarang ikatan terjuntai. Kajian
juga mendapati bahawa panjang ikatan meningkat pada ikatan silikon-hidroksil
pada permukaan noktah kuantum. Manakala, herotan diperhatikan semasa
proses pengenduran dinamik di bahagian teras noktah kuantum. Bagi
pempasif metil pula, peningkatan ikatan silikon-metil pada permukaan
meningkat lebih ketara, sementara pembentukan geometri tetrahedral
pada bahagian teras dikekalkan. Hal ini menyumbang kepada kesan
pengurungan elektron yang lebih jelas. Ringkasnya, kedua-dua jenis
pempasif memberikan kesan perubahan penting pada ciri elektronik
dalam tiga perspektif. Pertama, terdapat pengurangan nilai jurang
tenaga apabila bahan pempasif yang digunakan mempunyai darjah kebebasan
pergerakan yang sangat dinamik menyebabkan pengherotan pada bahagian
teras. Kedua, walaupun kehadiran kedua-dua pempasif mempengaruhi
nilai jurang tenaga, namun ia tetap menunjukkan sifat elektronik
tenaga jurang-langsung. Ketiga, kewujudan jurang tenaga kecil juga
diperhatikan agak ketara dalam jalur tenaga bagi noktah kuantum
bersaiz kecil, dengan kesan kehadirannya boleh menyebabkan pengurangan
hasil kuantum semasa proses eksiton berlaku.
Kata kunci: Kesan pempasifan; ketumpatan
keadaan; noktah kuantum silikon; teori fungsian ketumpatan
ABSTRACT
A series of an ab-initio calculation has been done to study
the change of structural and electronic properties of silicon quantum dot
caused by inorganic compound, hydroxyl (OH) and organic compound,
methyl (CH3) passiviants. Geometrical optimization shows that the
fully saturated passivated structures were possible, after undergone surface
reconstruction without any dangling bond left. We also found that there were a
bond increment for the silicon-hydroxyl bond at structural surface. Meanwhile,
distortion were also noticed during dynamical relaxation process at the quantum
dots core region. For methyl passivation compound, there were significant
increments of bond length for the silicon-methyl bond, while the symmetrical of
tetrahedral geometry were preserved at core region. This will contribute to the
clear confinement effect on methyl passivated quantum dots. Shortly, both
passiviants effect on electronic properties of the silicon quantum dots can be
simplified in three perspectives. First, there were significant reduction of
the energy-gap when the passiviants used were highly dynamical movement that
caused a distortion on the core structure. Second, both passiviants does influenced
the energy-gap of quantum dots, however the direct gap behaviour of this
nanocrystal still preserved. Third, the presence of mini-gaps energy gap were
quite noticeable for small clusters, unfortunately it can reduce the quantum
yield of exitonic process.
Keywords: Density functional theory; density of states;
passivation effect; silicon quantum dots
REFERENCES
ABINIT. 2014. Versi 7.10.2. Tutorial
manual.http://www.abinit.
org/documentation/helpfiles/for-v7.10/tutorial/lesson_gw1. html. Diakses pada
15 Januari 2015.
Anas, M.M., Othman, A.P. & Gopir, G. 2014.
First-principle study of quantum confinement effect on small sized silicon
quantum dots using density-functional theory. AIP Conference Proceedings 1614:
104-109.
AVOGADRO. 2012. Versi 1.1.1.
http://avogadro.openmolecules. net/. Diakses pada 18 Januari 2014.
Belomoin, G., Therrien, J., Smith, A., Rao, S.,
Twesten, R., Chaieb, S., Nayfeh, M.H., Wagner, L. & Mitas, L. 2002.
Observation of a magic discrete family of ultrabright Si nanoparticles. Applied
Physics Letters 80(5): 841-843.
Broyden, C.G. 1970. The convergence of a class
of double rank minimization algorithms. J. Inst. Math. Appl. 6: 76-90.
Dohnalova, K., Saeed, S., Poddubny, A.N.,
Prokofiev, A.A. & Gregorkiewicza, T. 2013. Thermally activated emission
from direct bandgap-like silicon quantum dots. Journal of Solid State
Science and Technology 2(6): 97-99.
Fletcher, R. 1970. A new approach to variable
metric algorithms. Comput. J. 13(3): 317-322.
Goldfarb, D. 1970. A family
of variable metric methods derived by variational means. Mathematics of
Computation 24(109): 23-26.
Laref, A., Al-shammari, N.,
Laref, S. & Luo, S.J. 2013. Surface passivation effects on the electronic
and optical properties of silicon quantum dots. Solar Energy Materials &
Solar Cells 120: 622-630.
Momma, K. & Izumi, F. 2011. VESTA 3 for three-dimensional
visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44:
1272-1276.
Onida, G., Reining, L. &
Rubio, A. 2002. Electronic excitations: Density-functional versus
many-body Green's-function approaches. Reviews of Modern Physics
74(2): 601-659.
OpenMX, 2013. User's manual
of OpenMX Ver. 3.7.
Ozaki, T. 2004. Numerical
atomic basis orbitals from H to Kr. Phys. Rev. B 69(19): 195113.
Perdew, J.P. & Zunger,
A. 1981. Self-interaction correction to density-functional approximations for
many-electron systems. Phys. Rev. B 23(10): 5048-5079.
Rappe, A.K., Casewit, C.J.,
Colwell, K.S., Goddard III, W.A. & Skiff, W.M. 1992. UFF, a full periodic
table force field for molecular mechanics and molecular dynamics simulations. Journal
of American Chemical Society 114(25): 10024- 10035.
Rogozhina, E., Belomoin, G., Smith, A.,
Abuhassan, L., Barry, N., Akcakir, O., Braun, P.V. & Nayfeh, M.H. 2001.
Si-N linkage in ultrabright, ultrasmall Si nanoparticles. Applied Physics
Letters 78: 3711-3713.
Shanno, D.F. 1970. Conditioning of quasi-Newton
methods for functional minimization. Math. Comp. 24(111): 647-656.
Solanki, C.S. 2009. Solar Photovoltaics:
Fundamentals Technologies and Applications. New Delhi: Prentice-Hall of
India (Pvt. Ltd.).
Vanderbilt, D. 1990. Soft self-consistent
pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 41(11):
7892-7895.
Zhang, Y., Chen, W., Zhang, J., Liu, J., Chen,
G. & Pope, C. 2007. In vitro and in vivo toxicity of CdTe
nanoparticles. Journal of Nanoscience and Nanotechnology 7(2): 497-503.
Zou, J., Baldwin, R.K., Pettigrew, K.A. &
Kauzlarich, S.M. 2004. Solution synthesis of ultrastable luminescent
siloxane-coated silicon nanoparticles. Nano Letters 4(7): 1181-1186.
*Corresponding author; email: mus_physics@yahoo.com
|