Sains Malaysiana 45(4)(2016): 567–573

Evaluating Organ Dose and Radiation Risk of Routine CT Examinations in Johor, Malaysia

(Penilaian Dos Organ dan Risiko Radiasi Pemeriksaan CT Rutin di Johor, Malaysia)

 

 

M.K.A. KARIM1,2*, S. HASHIM1, A. SABARUDIN3, D.A. BRADLEY4 & N.A. BAHRUDDIN1

 

1Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

2Division of Public Health, Johor State Health Department, 80100 Johor Bahru, Johor Darul Takzim, Malaysia

 

3Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz,

50300 Kuala Lumpur, Malaysia

 

4Centre for Nuclear & Radiation Physics, Department of Physic, University of Surrey, Guildford, GU2 7XH, United Kingdom

 

Received: 14 August 2015/Accepted: 1 October 2015

 

ABSTRACT

In this study, radiation doses from CT scan procedures and its related risks to the patients from five hospitals in Johor State, Malaysia were analyzed. The survey was conducted in a two-month period encompassing data for 460 patients with the number for each hospital being set at 32, 30 and 30 samples for CT brain, CT thorax and CT abdomen, respectively. The results indicated that the CTDIw, DLP and effective dose values ranged from 7.0±1.3 to 67.7±3.4 mGy, 300.2±135.4 to 1174.2±79.9 mGy.cm and 1.5±0.2 to 11.7±6.65 mSv, respectively. The organ doses were calculated using CT EXPO software (Ver. 2.3.1, Germany) and were found to vary within the hospitals and the type of the CT examinations. Effective cancer risks per procedure were calculated by multiplying organ dose with the nominal cancer risk that was adapted from International Commission on Radiological Protection (ICRP) Publication 103. The values ranged from 0 to 1449 cancer cases per one million procedures for these three routine examinations. This present work showed that the CT systems can impart high radiation doses and increase of radiation risk to patients if optimization protocols are ignored.

 

Keywords: CT scan; effective dose; organ equivalent dose; risk assessment

 

ABSTRAK

Dalam kajian ini, dos sinaran daripada prosedur imbasan CT dan risiko yang berkaitan dengan pesakit daripada lima hospital di Johor, Malaysia telah dianalisis. Kajian ini dijalankan dalam tempoh dua bulan meliputi data untuk 460 pesakit dengan bilangan untuk setiap hospital ditetapkan masing-masing dengan 32, 30 dan 30 sampel untuk CT otak, CT toraks dan CT abdomen. Keputusan menunjukkan bahawa CTDIw, DLP dan dos berkesan, masing-masing berjulat 7.0±1.3 hingga 67.7±3,4 mGy, 300.2±135.4 hingga 1174.2±79.9 mGy.cm dan 1.5±2 hingga 11.7±6.65 mSv. Dos pada organ telah diukur menggunakan perisian CT-EXPO (Versi 2.3.1, Jerman) dan didapati berbeza-beza antara hospital. Risiko kanser efektif bagi setiap prosedur dikira dengan mendarabkan dos organ dengan risiko kanser nominal yang telah disesuaikan daripada laporan Suruhanjaya Antarabangsa bagi Perlindungan Radiologi (ICRP) Terbitan 103. Nilainya adalah berjulat antara 0-1449 kes kanser bagi setiap satu juta prosedur bagi tiga pemeriksaan rutin ini. Kajian ini mendedahkan sistem CT boleh menyebabkan dos radiasi yang tinggi dan peningkatan risiko radiasi kepada pesakit jika protokol pengoptimuman diabaikan.

 

Kata kunci: Dos berkesan; dos setara organ; imbasan CT; penilaian risiko

REFERENCES

Andrade, M.E.A., Borras, C., Khoury, H.J., Dias, S.K. & Barros, V.S.M. 2012. Organ doses and risks of computed tomography examinations in Recife, Brazil. Journal of Radiological Protection 251: 251-260.

Balonov, M.I. & Shrimpton, P.C. 2012. Effective dose and risks from medical x-ray procedures. Annals of the ICRP 41(3-4): 129-141.

Berrington de Gonzalez, A., Berg, C.D., Visvanathan, K. & Robson, M. 2009. Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers. Journal of the National Cancer Institute 101(3): 205-209.

Brenner, D.J. & E.J. Hall, 2007. Computed tomography--an increasing source of radiation exposure. The New England Journal of Medicine 357: 2277-2284.

Brix, G., Nagel, H.D., Stamm, G., Veit, R., Lechel, U., Griebel, J. & Galanski, M. 2003. Radiation exposure in multi-slice versus single-slice spiral CT: Results of a nationwide survey. European Radiology 13(8): 1979-1991.

Chen, W., Kolditz, D., Beister, M., Bohle, R. & Kalender, W.A. 2012. Fast on-site Monte Carlo tool for dose calculations in CT applications. Medical Physics 39(6): 2985-2996.

Cheung, T., Cheng, Q. & Feng, D. 2007. A practical method for determining organ dose during CT examination. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 65(2): 239-242.

European Commission. 1997. European Guidelines on Quality Criteria for Computed Tomography. EUR 16262 EN.

Hall, E.J. & Brenner, D.J. 2008. Cancer risks from diagnostic radiology. The British Journal of Radiology 81(965): 362- 378.

Huda, W. 2012. Computing patient specific effective doses and radiation risks in CT. Physica Medica 28(4): 333.

Huda, W., Tipnis, S., Sterzik, A. & Schoepf, U.J. 2010. Computing effective dose in cardiac CT. Physics in Medicine and Biology 55(13): 3675-3684.

ICRP. 2007. ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection.

Jessen, K.A., Shrimpton, P.C., Geleijns, J., Panzer, W. & Tosi, G. 1999. Dosimetry for optimisation of patient protection in computed tomography. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 50(1): 165-172.

Kalender, W.A. 2014. Dose in x-ray computed tomography. Physics in Medicine and Biology 59: R129-150.

Kharuzhyk, S.A., Matskevich, S.A., Filjustin, A.E., Bogushevich, E.V. & Ugolkova, S.A. 2010. Survey of computed tomography doses and establishment of national diagnostic reference levels in the Republic of Belarus. Radiation Protection Dosimetry 139(1): 367-370.

Lee, T.Y. & Chhem, R.K. 2010. Impact of new technologies on dose reduction in CT. European Journal of Radiology 76(1): 28-35.

Ministry of Health Malaysia. 2013. Guidelines in Malaysia Diagnostic Reference Levels in Medical Imaging (Radiology). Putrajaya.(download https://radia.moh.gov.my/project/)

Muhogora, W.E., Nyanda, A.M., Ngoye, W.M. & Shao, D. 2006. Radiation doses to patients during selected CT procedures at four hospitals in Tanzania. European Journal of Radiology 57: 461-467.

Ngaile, J.E. & Msaki, P. 2006. Estimation of patient organ doses from computed tomography examinations in Tanzania. Journal of Applied Clinical Medical Physics 7(3): 80-94.

O’Daniel, J.C., Stevens, D.M. & Cody, D.D. 2005. Reducing radiation exposure from survey CT scans. American Journal of Roentgenology 185: 509-515.

Origgi, D., Vigorito, S., Villa, G., Bellomi, M. & Tosi, G. 2006. Survey of computed tomography techniques and absorbed dose in Italian hospitals: A comparison between two methods to estimate the dose-length product and the effective dose and to verify fulfilment of the diagnostic reference levels. European Radiology 16(1): 227-237.

Osei, E.K. & Barnett, R. 2009. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures. Journal of Radiological Protection, IOP Publishing 361(29): 361-376.

Rehani, M.M. 2012. ICRP and IAEA actions on radiation protection in computed tomography.  Annals of the ICRP 41(3-4): 154-160.

Shrimpton, P.C., Hillier, M.C., Lewis, M.A. & M. Dunn, 2006. National survey of doses from CT in the UK: 2003. The British Journal of Radiology 79: 968-980.

Suliman, I.I., Abdalla, S.E., Nada A Ahmed, Galal, M.A. & Isam Salih. 2011. Survey of computed tomography technique and radiation dose in Sudanese hospitals. European Journal of Radiology 80(3): e544–551.

UNSCEAR. 2010. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Report to the General Assembly with scientific annexes, Vol.1. New York.

Verdun, F.R. 2008. CT radiation dose in children: A survey to establish age-based diagnostic reference levels in Switzerland. European Radiology 18: 1980-1986.

ImpACT. www.impactscan.org. Accessed on 11 August 2015.

 

 

*Corresponding author; email: khalis.karim@gmail.com

 

 

 

 

 

previous