Sains Malaysiana 45(5)(2016): 717–727

 

Isolation and Characterization of Full-Length Cellulose Synthase Gene (HsCesA1) from Roselle (Hibiscus sabdariffa L. var. UMKL)

(Pengasingan dan Pencirian Panjang Penuh Gen Selulosa Sintase (HsCesA1) daripada Rosel (Hibiscus sabdariffa L. var. UMKL))

 

SEYEDEH SAREH SEYEDI1, SOON GUAN TAN1, PARAMESWARI NAMASIVAYAM1

 & CHRISTINA SEOK YIEN YONG2*

 

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 18 March 2015/Accepted: 23 November 2015

 

ABSTRACT

The Hibiscus sabdariffa var. UMKL (Roselle) investigated here may potentially be used as an alternative fibre source. To the best of our knowledge, there was no study focusing on the genetics underlying the cellulose biosynthesis machinery in Roselle thus far. This paper presents the results of the first isolation of the cellulose synthase gene, HsCesA1 from this plant, which is fundamental for working towards understanding the functions of CesA genes in the cellulose biosynthesis of Roselle. A full-length HsCesA1 cDNA of 3528 bp in length (accession no: KJ608192) encoding a polypeptide of 974 amino acid was isolated. The full-length HsCesA1 gene of 5489 bp length (accession no: KJ661223) with 11-introns and a promoter region of 737 bp was further isolated. Important and conserved characteristics of a CesA protein were identified in the HsCesA1 deduced amino acid sequence, which strengthened the prediction that the isolated gene being a cellulose synthase belonging to the processive class of the 2-glycosyltransferase family 2A. Relative gene expression analysis by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) on young leaf and stem tissues found that HsCesA1 had similar levels of gene expression in both tissues. Phylogenetic and Blast analyses also supported the prediction that the isolated HsCesA1 may play roles in the cell wall depositions in both leaf and stem tissues.

 

Keywords: Cellulose; cellulose synthase gene (CesA); fibre; HsCesA1; promoter; semi-quantitative RT-PCR

 

ABSTRAK

Hibiscus sabdariffa var. UMKL (Rosel) yang dikaji berpotensi digunakan sebagai sumber serat alternatif. Sepanjang pengetahuan kami, tidak ada kajian memberi tumpuan kepada genetik asas jentera selulosa biosintesis dalam Roselle setakat ini. Kertas ini membentangkan keputusan pengasingan pertama gen selulosa sintase, HsCesA1 daripada tumbuhan ini, yang merupakan asas ke arah memahami fungsi gen CesA dalam biosintesis selulosa Roselle. Satu jujukan penuh cDNA HsCesA1 dengan panjang 3528 bp (No aksesi: KJ608192) mengekodkan polipeptida sepanjang 974 asid amino telah dipencilkan. Jujukan penuh gen HsCesA1 sepanjang 5489 bp (No. aksesi: KJ661223) dengan 11-intron dan rantau promoter sepanjang 737 bp juga telah dipencilkan. Ciri penting dan abadi protin CesA telah dikenal pasti di dalam jujukan asid amino mendeduksi HsCesA1, yang mengukuhkan ramalan bahawa gen yang terpencil adalah selulosa sintase yang tergolong dalam kelas prosesif 2-glycosyltransferase keluarga 2A. Analisis relatif ekspresi gen menggunakan semi-kuantitatif tindak balas polimeras berantai transkripsi berbalik (RT-PCR) pada daun muda dan batang tisu mendapati HsCesA1 mempunyai tahap ekspresi gen yang sama dalam kedua-dua tisu. Analisis filogeni dan Blast juga menyokong ramalan bahawa pencilan HsCesA1 mungkin memainkan peranan dalam endapan dinding sel dalam kedua-dua tisu daun dan batang.

 

Kata kunci: Gen selulosa sintase (CesA); HsCesA1; promoter; selulosa; semi-kuantitatif RT-PCR; serat

REFERENCES

 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Aoyama, T., Dong, C.H., Wu, Y., Carabelli, M., Sessa, G., Ruberti, I. & Chua, N.H. 1995. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. The Plant Cell Online 7(11): 1773-1785.

Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K., Carrigan, L., Tomes, D., Chapman, M. & Dhugga, K.S. 2004. Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11: 287-299.

Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J. & Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

Artico, S., Nardeli, S., Brilhante, O., Grossi-de-Sa, M. & Alves-Ferreira, M. 2010. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology 10(1): 49.

Bektas, I., Guler, C., Kalaycioğlu, H., Mengeloglu, F. & Nacar, M. 2005. The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L.). Journal of Composite Materials 39(5): 467-473.

Brown Jr, R.M. & Saxena, I.M. 2000. Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiology and Biochemistry 38: 57-67.

Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J. & Fincher, G.B. 2004. The CesA gene family of barley-quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134: 224- 236.

Chang, W.C., Lee, T.Y., Huang, H.D., Huang, H.Y. & Pan, R.L. 2008. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9: 561.

Charnock, S.J. & Davies, G.J. 1999. Structure of the nucleotide-diphospho-sugar transferase. SpsA from Baeillus sublilis, in native and nucleotide-complexed forms. Biochemistry 38(20): 6380-6385.

Cobley, L.S. 1956. An Introduction to the Botany of Tropical Crops. Harlow: Longman Higher Education.

Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I. & Heinrich, M. 2014. Hibiscus sabdariffa L.- A phytochemical and pharmacological Review. Food Chemistry 165: 424-443.

Doyle, J.J. & Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

Endler, A. & Persson, S. 2011. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant 4: 199-211.

Guntekin, E. & Karakus, B. 2008. Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Industrial Crops and Products 27(3): 354-358.

Gürü, M., Tekeli, S. & Bilici, I. 2006. Manufacturing of urea– formaldehyde-based composite particleboard from almond shell. Materials & Design 27(10): 1148-1151.

Hayashi, T. 1989. Xyloglucans in the primary cell wall. Annual Review of Plant Biology 40(1): 139-168.

Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B. & Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiology 123: 1313-1324.

Hopkins, A.L., Lamm, M.G., Funk, J.L. & Ritenbaugh, C. 2013. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia 85: 84-94.

Huang, X. & Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Research 9(9): 868-877.

Joshi, C.P., Bhandari, S., Ranjan, P., Kalluri, U.C., Liang, X., Fujino, T. & Samuga, A. 2004. Genomics of cellulose biosynthesis in poplars. New Phytologist 164: 53-61.

Juliani, H.R., Welch, C.R., Wu, Q., Diouf, B., Malainy, D. & Simon, J.E. 2009. Chemistry and quality of hibiscus (Hibiscus sabdariffa) for developing the natural-product industry in Senegal. Journal of Food Science 74: S113-121.

Kimura, S. & Itoh, T. 1995. Evidence for the role of the glomerulocyte in cellulose synthesis in the tunicate, Metandrocarpa uedai. Protoplasma 186(1-2): 24-33.

Kim, H.J., Murai, N., Fang, D.D. & Triplett, B.A. 2011. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Science: An International Journal of Experimental Plant Biology 180: 323-332.

Kumar, M. & Turner, S. 2014. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112: 91-99.

Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M. & Delmer, D. 2002. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99: 11109-11114.

Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R. & Karthikeyan, A.S. 2012. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 40(D1): D1202-D1210.

Lee, J.J., Woodward, A.W. & Chen, Z.J. 2007. Gene expression changes and early events in cotton fibre development. Annals of Botany 100(7): 1391-1401.

Liang, X. & Joshi, C.P. 2004. Molecular cloning of ten distinct hypervariable regions from the cellulose synthase gene superfamily in aspen trees. Tree Physiology 24(5): 543-550.

Li, A., Xia, T., Xu, W., Chen, T., Li, X., Fan, J. & Peng, L. 2013. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 237(6): 1585-1597.

Lin, C.C. & Aronson, J.M. 1970. Chitin and cellulose in the cell walls of the oomycete, Apodachlya sp. Archiv für Mikrobiologie 72(2): 111-114.

Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O. & Borodovsky, M. 2005. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research 33(20): 6494-6506.

Mueller, S.C. & Brown Jr, R.M. 1980. Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. Journal of Cell Biology 84: 315-326.

Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. & Stalker, D.M. 1996. Higher plants contain homolog of the bacterial, Ce1A genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637-12642.

Proost, S., Van Bel, M., Vaneechoutte, D., Van de Peer, Y., Inzé, D., Mueller-Roeber, B. & Vandepoele, K. 2015. PLAZA 3.0: An access point for plant comparative genomics. Nucleic Acids Research 43(D1): D974-D981.

Ranik, M. & Myburg, A.A. 2006. Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiology 26: 545- 556.

Richmond, T.A. 2000. Higher plant cellulose synthases. Genome Biol. 1(4): 3001.1-3001.6.

Rodrigues, M.M.R. 2010. Processing hibiscus beverage using dense phase carbon dioxide. Doctoral dissertation, University of Florida (Unpublished).

Saitou, N. & Nei, M. 1987. The neighbor-joining method - A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

Saxena, I.M. & Brown, R.M. 1997. Identification of cellulose synthase (s) in higher plants: Sequence analysis of processive-glycosyltransferases with the common motif ‘D, D, D35Q(R, Q)XRW’. Cellulose 4: 33-49.

Sáyago-Ayerdi, S.G., Arranz, S., Serrano, J. & Goñi, I. 2007. Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J. of Agricultural and Food Chemistry 55: 7886-7890.

Scheible, W.R., Eshed, R., Richmond, T., Delmer, D. & Somerville, C. 2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proceedings of the National Academy of Sciences 98(18): 10079-10084.

Sethaphong, L, Haigler, C.H., Kubicki, J.D., Zimmer, J., Bonetta, D., DeBolt, S. & Yingling, Y.G. 2013. Tertiary model of a plant cellulose synthase. Proceedings of the National Academy of Sciences 110: 7512-7517.

Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A. & Lukyanov, S.A. 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Research 23(6): 1087-1088.

Singha, A.S. & Thakur, V.K. 2008. Mechanical properties of natural fiber reinforced polymer composites. Bull. Mater. Sci. 31: 791-799.

Somerville, C.R. 2006. Cellulose synthase in higher plants. Annu. Rev. Cell Dev. Biol. 22: 53-78.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A. & Hirochika, H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required cellulose synthesis in the secondary wall. Plant Physiol. 133: 73-83.

Timmers, J., Vernhettes, S., Desprez, T., Vincken, J.P., Visser, R.G. & Trindade, L.M. 2009. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters 583: 978-982.

Wu, L., Joshi, C.P. & Chiang, V.L. 2000. A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. The Plant Journal 22: 495-502.

Xu, X., Yao, F., Wu, Q. & Zhou, D. 2009. The influence of wax-sizing on dimension stability and mechanical properties of bagasse particleboard. Industrial Crops and Products 29(1): 80-85.

Yasina, M., Bhuttob, A.W., Bazmia, A.A. & Karimb, S. 2010. Efficient utilization of rice-wheat straw to produce value– added composite products. International Journal of Chemical and Environmental Engineering 1(2).

Yong, S.Y.C. & Wickneswari, R. 2013. Molecular characterization of a cellulose synthase gene (AaxmCesA1) isolated from an Acacia auriculiformis × Acacia mangium hybrid. Plant Molecular Biology Reporter 31(2): 303-313.

Zhou, H. 2005. Isolation and functional genetic analysis of Eucalyptus wood formation genes. Doctoral dissertation, University of Pretoria (Unpublished).

 

 

*Corresponding author; email: yong_syc@yahoo.com

 

 

 

previous