Sains Malaysiana 45(5)(2016):
735–743
The Use of Otolith Morphometrics in
Determining the Size and Species Identification of Eight Mullets (Mugiliformes:
Mugilidae) from Malaysia
(Kegunaan Otolit Morfometrik untuk Menentukan
Saiz dan Pengenalpastian Spesies bagi Lapan Belanak (Mugiliformes: Mugilidae)
dari Malaysia)
MORWENNA SEE1, SARA MARSHAM2, CHIH WEI CHANG3,4, VING CHING CHONG5,6, A. SASEKUMAR5, SARINDER KAUR DHILLON6 & KAR HOE LOH6*
1School of Marine Science
& Technology, University of Newcastle upon Tyne, Ridley Building, Claremont
Road, Newcastle upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom
2Dove Marine Laboratory, School
of Marine Science & Technology, Cullercoats, North Shields, Tyne and Wear, NE30
4PZ, United Kingdom
3National Museum of
Marine Biology and Aquarium, Taiwan ROC
4Institute of Marine
Biodiversity and Evolutionary Biology, National Donghwa University,
Taiwan ROC
5Institute of Biological
Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
6Institute of Ocean and
Earth Sciences, C308, Institute of Postgraduate Studies Building, University of
Malaya, 50603 Kuala Lumpur, Malaysia
Received: 17 March 2015/Accepted:
18 November 2015
ABSTRACT
Sagittal otolith morphometric
measurements from Malaysian Mugilidae species were selected to investigate
their possible role in species identification, due to the Mugilidae species’
morphological similarities, and age determination. Fish standard length (cm),
otolith length (μm), width (μm) and mass (g) measurements were taken
from eight species: Chelon macrolepis, C. melinopterus, C. subviridis, Ellochelon
vaigiensis, Moolgarda cunnesius, M. seheli, Mugil cephalus and Valamugil
engeli. Otolith aspect ratio, OAS (otolith length divided by
width), was calculated and compared between species. The four homogenous groups
based on their OAS were C. melinopterus (mean=1.65)
and V. engeli (1.66) and M. cunnesius (1.89) and E.
vaigiensis (1.89); M. seheli (2.08), C. macrolepis (2.14) and M.
cephalus (2.17); and the latter two with C. subviridis (2.43). The
relationships between fish standard length and otolith length/mass showed
positive correlations for both, with otolith length providing the stronger
correlation (rs = 0.897, P < 0.001) than otolith mass (rs =
0.795, P < 0.001). It is concluded that the more morphologically similar
species have similar otolith aspect ratios, related to head shape; however,
otolith shape is also affected by a variety of other environmental factors that
have to be taken account of.
Keywords: Mugilidae; otolith; sagittal;
taxonomy
ABSTRAK
Ukuran morfometri
sagital otolit daripada spesies Mugilidae Malaysia telah dipilih
untuk kajian kemungkinan peranannya dalam penentuan spesies yang
disebabkan oleh persamaan morfologi spesies Mugilidae dan penentuan
umur. Pengukuran
piawaian panjang ikan (cm), panjang otolit (μm), lebar (μm)
dan berat (g) telah diambil daripada lapan spesies: Chelon macrolepis, C. melanopterus,
C. subviridis, Ellochelon vaigiensis, Moolgarda cunnesius, M. seheli,
Mugil cephalus dan Valamugil engeli. Nisbah
aspek otolit, OAS (panjang otolit dibahagikan dengan
lebar), dikira dan dibandingkan antara spesies. Empat
kumpulan homogen berdasarkan OAS mereka adalah C. melanopterus
(min = 1.65) dan V. engeli (1.66) dan M. cunnesius
(1.89) dan E. vaigiensis (1.89); M. seheli (2.08),
C. macrolepis (2.14) dan M. cephalus (2.17); dan kedua-dua
akhir dengan C. subviridis (2.43). Hubungan antara piawaian panjang
ikan dan panjang otolit/berat menunjukkan korelasi positif bagi
kedua-duanya, dengan panjang otolit memberikan hubungan yang lebih
kukuh (rs = 0.897, P <0.001) berbanding berat otolit (rs
= 0,795, P <0.001). Dirumuskan bahawa lebih morfologi
spesies yang serupa mempunyai nisbah aspek otolit yang sama,
yang berkaitan dengan bentuk kepala; namun, bentuk otolit juga dipengaruhi
oleh pelbagai faktor persekitaran lain yang perlu diambil kira.
Kata
kunci: Mugilidae; otolit; sagital; taksonomi
REFERENCES
Aguirre,
H. & Lombarte, A., 1999. Ecomorphological comparisons
of sagittae in Mullus barbatus and M. surmuletus. Journal
of Fish Biology 55(1): 105-114.
Ali,
A., Khaled, S. & Bettina, R. 2013. Inter-population differences in otolith
morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Scientia Marina 77(2): 269-279.
Andrus, C.F.T., Crowe,
D.E., Sandweiss, D.H., Reitz, E.J. & Romanek, C.S. 2002. Otolith
δ18O record of mid-holocene sea surface temperatures in Peru. Science 295(5559): 1508- 1511.
Arellano,
R.V., Hamerlynck, O., Vincx, M., Mees, J., Hostens, K. & Gijselinck, W.
1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Marine Biology 122(3): 355-360.
Bani,
A., Poursaeid, S. & Tuset, V.M. 2013. Comparative morphology
of the sagittal otolith in three species of south Caspian gobies. Journal
of Fisheries Biology 82(4): 1321- 1332.
Cailliet,
G.M., Andrews, A.H., Burton, E.J., Watters, D.L., Kline, D.E. &
Ferry-Graham, L.A. 2001. Age determination and validation studies of marine fishes:
Do deep-dwellers live longer? Experimental Gerontology 36(4-6): 739-764.
Campana, S. 2004. Photographic Atlas of Fish Otoliths of the Northwest Atlantic
Ocean. Ottawa: National Research Council Canada.
Campana, S. 2001. Accuracy, precision and quality control in age determination,
including a review of the use and abuse of age validation methods. Journal
of Fish Biology 59(2): 197-242.
Carpenter,
K.E. & Niem, V.H. 1999. FAO Species Identification
Guide for Fishery Purposes. The Living Marine
Resources of the Western Central Pacific.Volume 4. Bony fishes part
2 (Mugilidae to Carangidae). Rome: FAO. pp. 2069-2790.
Degens, E.T., Deuser,
W.G. & Haedrich, R.L. 1969. Molecular
structure and composition of fish otoliths. Marine Biology 2(2):
105-113.
de Vries, D.A., Grimes,
C.B. & Prager, M.H. 2002. Using otolith shape analysis to distinguish
eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries
Research 57(1): 51-62.
Dub, J.D., Redman, R.A.,
Wahl, D.H. & Czesny, S.J. 2013. Utilizing random forest analysis with
otolith mass and total fish length to obtain rapid and objective estimates of
fish age. Canadian Journal of Fisheries and Aquatic Sciences 70(9):
1396-1401.
Fossen, I., Albert, O.T.
& Nilssen, E.M. 2003. Improving the precision of ageing assessments for
long rough dab by using digitised pictures and otolith measurements. Fisheries
Research 60(1): 53-64.
Harvey,
J.T., Loughlin, T.R., Perez, M.A. & Oxman, D.S. 2000. Relationship
between Fish Size and Otolith Length for 63 Species of Fishes from the Eastern
North Pacific Ocean. Seattle: NOAA Technical Report NMFS. p. 150.
Hotos, G.N. 2003. A study on the scales and age estimation of the grey golden mullet, Liza aurata (Risso, 1810), in the lagoon of Messolonghi (W. Greece). Journal of Applied Ichthyology 19(4): 220-228.
Isermann, D.A.,
Meerbeek, J.R., Scholten, G.D. & Willis, D.W. 2003. Evaluation of three
different structures used for walleye age estimation with emphasis on removal
and processing times. North American Journal of Fisheries Management 23(2):
625-631.
Kristoffersen, J.B.
& Salvanes, A.G.V. 1998. Effects of formaldehyde and
ethanol preservation on body and otoliths of Maurolicus muelleri and Benthosema
glaciale. Sarsia 83(2): 94-102.
Kumar,
P., Chakraborty, S.K. & Jaiswar, A.K. 2012. Comparative otolith
morphology of sciaenids occurring along the north-west coast of India. Indian Journal of Fisheries 59(4): 19-27.
Lin,
C.H., Li, K.T. & Chang, C.W. 2013. Identification of Pomadays species
(Pisces, Haemulidae) from an archaeological midden site in Nankuanli East
(Taiwan), based on otolith morphology. The Raffles
Bulletin of Zoology 61(1): 293-302.
Lombarte,
A., Palmer, M., Matallanas, J., Gómez-Zurita, J. & Morales-Nin, B. 2010. Ecomorphological
trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental
Biology of Fishes 89(3-4): 607-618.
Lombarte, A. & Lleonart, J. 1993. Otolith size changes
related with body growth, habitat depth and temperature. Environmental
Biology of Fishes 37(3): 297-306.
Lombarte,
A. 1992. Changes in otolith area: Sensory area ratio with body size and depth. Environmental
Biology of Fishes 33(4): 405-410.
Lord, C., Morat, F.,
Lecomte-Finiger, R. & Keith, P. 2011. Otolith shape analysis for three
Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and
Vanuatu. Environmental Biology of Fishes 93(2): 209-222.
Matić-Skoko,
S., Ferri, J., Kraljević, M. & Pallaoro, A. 2012. Age estimation and
specific growth pattern of boxlip mullet, Oedalechilus labeo (Cuvier,
1829) (Osteichthyes, Mugilidae), in the eastern Adriatic Sea. Journal of
Applied Ichthyology 28(2): 182-188.
Matić-Skoko,
S., Ferri, J., Škeljo, F., Bartulović, V., Glavić, K. &
Glamuzina, B. 2011. Age, growth and validation of otolith
morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research 112(1-2): 52-58.
Paxton, J.R. 2000. Fish
otoliths: Do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355(1401): 1299-303.
Popper, A.N. & Lu,
Z. 2000. Structure–function relationships in fish otolith organs. Fisheries
Research 46(1–3): 15-25.
Popper,
A.N., Ramcharitar, J. & Campana, S.E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine
and Freshwater Research 56(5): 497-504.
Radhakrishnan, K.V.,
Liu, M., He, W., Murphy, B. & Xie, S. 2010. Otolith
retrieval from faeces and reconstruction of prey-fish size for Great Cormorant
(Phalacrocorax carbo) wintering at the East Dongting Lake National
Nature Reserve, China. Environmental Biology of Fishes 89(3-4):
505-512.
Reichenbacher,
B., Sienknecht, U., Küchenhoff, H. & Fenske, N. 2007. Combined otolith morphology
and morphometry for assessing taxonomy and diversity in fossil and
extant killifish (Aphanius, Prolebias). Journal of Morphology
268(10): 898-915.
Sadighzadeh,
Z., Valinassab, T., Vosugi, G., Motallebi, A.A., Fatemi, M.R., Lombarte,
A. & Tuset, V.M. 2014. Using otolith shape for stock identification of John's snapper,
Lutjanus johnii (Pisces: Lutjanidae), from the Persian
Gulf and the Oman Sea. Fisheries Research 155: 59-63.
Steward, C.A., De Maria,
K.D. & Shenker, J.M. 2009. Using otolith morphometrics to quickly and
inexpensively predict age in the gray angelfish (Pomacanthus arcuatus). Fisheries
Research 99(2): 123-129.
Stransky,
C., Baumann, H., Fevolden, S.E., Harbitz, A., Høie, H., Nedreaas, K.H.,
Salberg, A.B. & Skarstein, T.H. 2008. Separation of Norwegian coastal cod and
Northeast Arctic cod by outer otolith shape analysis. Fisheries Research 90(1–3):
26-35.
Suthers, I.M., Fraser,
A. & Frank, K.T. 1992. Comparison of lipid, otolith and morphometric
condition indicies of pelagic juvenile cod Gadus morhua from the
Canadian Atlantic. Marine Ecology Progress Series 84: 31-40.
Sweeney, J.M. & Harvey,
J.T. 2011. Diet estimation in California sea lions, Zalophus
californianus. Marine Mammal Science 27(4): 279-301.
Tournois,
J., Ferraton, F., Velez, L., McKenzie, D.J., Aliaume, C., Mercier, L. &
Darnaude, A.M. 2013. Temporal stability of otolith elemental fingerprints
discriminates among lagoon nursery habitats. Estuarine, Coastal and Shelf
Science 131(0): 182-193.
Turan, C. 2006. The use of otolith shape and chemistry to determine stock structure
of Mediterranean horse mackerel Trachurus mediterraneus
(Steindachner). Journal of Fish Biology 69: 165-180.
Tuset, V.M., Rosin, P.L.
& Lombarte, A. 2006. Sagittal otolith shape used in the identification of
fishes of the genus Serranus. Fisheries Research 81(2-3): 316-325.
Veinott,
G., Westley, P.A.H., Warner, L. & Purchase, C.F. 2012. Assigning origins in a
potentially mixed-stock recreational sea trout (Salmo trutta) fishery. Ecology
of Freshwater Fish 21(4): 541-551.
Volpedo, A. &
Echeverr?, D.D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research 60(2–3):
551-560.
Wells,
R.J.D., Kohin, S., Teo, S.L.H., Snodgrass, O.E. & Uosaki, K. 2013. Age and growth of North
Pacific albacore (Thunnus alalunga): Implications for stock assessment. Fisheries
Research 147(0): 55-62.
Wenzel, F.W., Polloni,
P.T., Craddock, J.E., Gannon, D.P., Nicolas, J.R., Read, A.J. & Rosel, P.E.
2013. Food habits of Sowerby’s beaked whales (Mesoplodon bidens) taken
in the pelagic drift gillnet fishery of the western North Atlantic. Fishery
Bulletin 111(4): 381-389.
*Corresponding author; email: khloh@um.edu.my
|