Sains Malaysiana 45(5)(2016): 735–743

 

The Use of Otolith Morphometrics in Determining the Size and Species Identification of Eight Mullets (Mugiliformes: Mugilidae) from Malaysia

(Kegunaan Otolit Morfometrik untuk Menentukan Saiz dan Pengenalpastian Spesies bagi Lapan Belanak (Mugiliformes: Mugilidae) dari Malaysia)

MORWENNA SEE1, SARA MARSHAM2, CHIH WEI CHANG3,4, VING CHING CHONG5,6, A. SASEKUMAR5,  SARINDER KAUR DHILLON6 & KAR HOE LOH6*

 

1School of Marine Science & Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom

 

2Dove Marine Laboratory, School of Marine Science & Technology, Cullercoats, North Shields, Tyne and Wear, NE30 4PZ, United Kingdom

 

3National Museum of Marine Biology and Aquarium, Taiwan ROC

 

4Institute of Marine Biodiversity and Evolutionary Biology, National Donghwa University,

Taiwan ROC

 

5Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

6Institute of Ocean and Earth Sciences, C308, Institute of Postgraduate Studies Building, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 17 March 2015/Accepted: 18 November 2015

 

ABSTRACT

Sagittal otolith morphometric measurements from Malaysian Mugilidae species were selected to investigate their possible role in species identification, due to the Mugilidae species’ morphological similarities, and age determination. Fish standard length (cm), otolith length (μm), width (μm) and mass (g) measurements were taken from eight species: Chelon macrolepis, C. melinopterus, C. subviridis, Ellochelon vaigiensis, Moolgarda cunnesius, M. seheli, Mugil cephalus and Valamugil engeli. Otolith aspect ratio, OAS (otolith length divided by width), was calculated and compared between species. The four homogenous groups based on their OAS were C. melinopterus (mean=1.65) and V. engeli (1.66) and M. cunnesius (1.89) and E. vaigiensis (1.89); M. seheli (2.08), C. macrolepis (2.14) and M. cephalus (2.17); and the latter two with C. subviridis (2.43). The relationships between fish standard length and otolith length/mass showed positive correlations for both, with otolith length providing the stronger correlation (rs = 0.897, P < 0.001) than otolith mass (rs = 0.795, P < 0.001). It is concluded that the more morphologically similar species have similar otolith aspect ratios, related to head shape; however, otolith shape is also affected by a variety of other environmental factors that have to be taken account of.

 

Keywords: Mugilidae; otolith; sagittal; taxonomy

 

 

ABSTRAK

Ukuran morfometri sagital otolit daripada spesies Mugilidae Malaysia telah dipilih untuk kajian kemungkinan peranannya dalam penentuan spesies yang disebabkan oleh persamaan morfologi spesies Mugilidae dan penentuan umur. Pengukuran piawaian panjang ikan (cm), panjang otolit (μm), lebar (μm) dan berat (g) telah diambil daripada lapan spesies: Chelon macrolepis, C. melanopterus, C. subviridis, Ellochelon vaigiensis, Moolgarda cunnesius, M. seheli, Mugil cephalus dan Valamugil engeli. Nisbah aspek otolit, OAS (panjang otolit dibahagikan dengan lebar), dikira dan dibandingkan antara spesies. Empat kumpulan homogen berdasarkan OAS mereka adalah C. melanopterus (min = 1.65) dan V. engeli (1.66) dan M. cunnesius (1.89) dan E. vaigiensis (1.89); M. seheli (2.08), C. macrolepis (2.14) dan M. cephalus (2.17); dan kedua-dua akhir dengan C. subviridis (2.43). Hubungan antara piawaian panjang ikan dan panjang otolit/berat menunjukkan korelasi positif bagi kedua-duanya, dengan panjang otolit memberikan hubungan yang lebih kukuh (rs = 0.897, P <0.001) berbanding berat otolit (rs = 0,795, P <0.001). Dirumuskan bahawa lebih morfologi spesies yang serupa mempunyai nisbah aspek otolit yang sama, yang berkaitan dengan bentuk kepala; namun, bentuk otolit juga dipengaruhi oleh pelbagai faktor persekitaran lain yang perlu diambil kira.

 

Kata kunci: Mugilidae; otolit; sagital; taksonomi

REFERENCES

Aguirre, H. & Lombarte, A., 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. Journal of Fish Biology 55(1): 105-114.

Ali, A., Khaled, S. & Bettina, R. 2013. Inter-population differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Scientia Marina 77(2): 269-279.

Andrus, C.F.T., Crowe, D.E., Sandweiss, D.H., Reitz, E.J. & Romanek, C.S. 2002. Otolith δ18O record of mid-holocene sea surface temperatures in Peru. Science 295(5559): 1508- 1511.

Arellano, R.V., Hamerlynck, O., Vincx, M., Mees, J., Hostens, K. & Gijselinck, W. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Marine Biology 122(3): 355-360.

Bani, A., Poursaeid, S. & Tuset, V.M. 2013. Comparative morphology of the sagittal otolith in three species of south Caspian gobies. Journal of Fisheries Biology 82(4): 1321- 1332.

Cailliet, G.M., Andrews, A.H., Burton, E.J., Watters, D.L., Kline, D.E. & Ferry-Graham, L.A. 2001. Age determination and validation studies of marine fishes: Do deep-dwellers live longer? Experimental Gerontology 36(4-6): 739-764.

Campana, S. 2004. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Ottawa: National Research Council Canada.

Campana, S. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59(2): 197-242.

Carpenter, K.E. & Niem, V.H. 1999. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific.Volume 4. Bony fishes part 2 (Mugilidae to Carangidae). Rome: FAO. pp. 2069-2790.

Degens, E.T., Deuser, W.G. & Haedrich, R.L. 1969. Molecular structure and composition of fish otoliths. Marine Biology 2(2): 105-113.

de Vries, D.A., Grimes, C.B. & Prager, M.H. 2002. Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research 57(1): 51-62.

Dub, J.D., Redman, R.A., Wahl, D.H. & Czesny, S.J. 2013. Utilizing random forest analysis with otolith mass and total fish length to obtain rapid and objective estimates of fish age. Canadian Journal of Fisheries and Aquatic Sciences 70(9): 1396-1401.

Fossen, I., Albert, O.T. & Nilssen, E.M. 2003. Improving the precision of ageing assessments for long rough dab by using digitised pictures and otolith measurements. Fisheries Research 60(1): 53-64.

Harvey, J.T., Loughlin, T.R., Perez, M.A. & Oxman, D.S. 2000. Relationship between Fish Size and Otolith Length for 63 Species of Fishes from the Eastern North Pacific Ocean. Seattle: NOAA Technical Report NMFS. p. 150.

Hotos, G.N. 2003. A study on the scales and age estimation of the grey golden mullet, Liza aurata (Risso, 1810), in the lagoon of Messolonghi (W. Greece). Journal of Applied Ichthyology 19(4): 220-228.

Isermann, D.A., Meerbeek, J.R., Scholten, G.D. & Willis, D.W. 2003. Evaluation of three different structures used for walleye age estimation with emphasis on removal and processing times. North American Journal of Fisheries Management 23(2): 625-631.

Kristoffersen, J.B. & Salvanes, A.G.V. 1998. Effects of formaldehyde and ethanol preservation on body and otoliths of Maurolicus muelleri and Benthosema glaciale. Sarsia 83(2): 94-102.

Kumar, P., Chakraborty, S.K. & Jaiswar, A.K. 2012. Comparative otolith morphology of sciaenids occurring along the north-west coast of India. Indian Journal of Fisheries 59(4): 19-27.

Lin, C.H., Li, K.T. & Chang, C.W. 2013. Identification of Pomadays species (Pisces, Haemulidae) from an archaeological midden site in Nankuanli East (Taiwan), based on otolith morphology. The Raffles Bulletin of Zoology 61(1): 293-302.

Lombarte, A., Palmer, M., Matallanas, J., Gómez-Zurita, J. & Morales-Nin, B. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 89(3-4): 607-618.

Lombarte, A. & Lleonart, J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes 37(3): 297-306.

Lombarte, A. 1992. Changes in otolith area: Sensory area ratio with body size and depth. Environmental Biology of Fishes 33(4): 405-410.

Lord, C., Morat, F., Lecomte-Finiger, R. & Keith, P. 2011. Otolith shape analysis for three Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. Environmental Biology of Fishes 93(2): 209-222.

Matić-Skoko, S., Ferri, J., Kraljević, M. & Pallaoro, A. 2012. Age estimation and specific growth pattern of boxlip mullet, Oedalechilus labeo (Cuvier, 1829) (Osteichthyes, Mugilidae), in the eastern Adriatic Sea. Journal of Applied Ichthyology 28(2): 182-188.

Matić-Skoko, S., Ferri, J., Škeljo, F., Bartulović, V., Glavić, K. & Glamuzina, B. 2011. Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research 112(1-2): 52-58.

Paxton, J.R. 2000. Fish otoliths: Do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355(1401): 1299-303.

Popper, A.N. & Lu, Z. 2000. Structure–function relationships in fish otolith organs. Fisheries Research 46(1–3): 15-25.

Popper, A.N., Ramcharitar, J. & Campana, S.E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research 56(5): 497-504.

Radhakrishnan, K.V., Liu, M., He, W., Murphy, B. & Xie, S. 2010. Otolith retrieval from faeces and reconstruction of prey-fish size for Great Cormorant (Phalacrocorax carbo) wintering at the East Dongting Lake National Nature Reserve, China. Environmental Biology of Fishes 89(3-4): 505-512.

Reichenbacher, B., Sienknecht, U., Küchenhoff, H. & Fenske, N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, Prolebias). Journal of Morphology 268(10): 898-915.

Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A.A., Fatemi, M.R., Lombarte, A. & Tuset, V.M. 2014. Using otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research 155: 59-63.

Steward, C.A., De Maria, K.D. & Shenker, J.M. 2009. Using otolith morphometrics to quickly and inexpensively predict age in the gray angelfish (Pomacanthus arcuatus). Fisheries Research 99(2): 123-129.

Stransky, C., Baumann, H., Fevolden, S.E., Harbitz, A., Høie, H., Nedreaas, K.H., Salberg, A.B. & Skarstein, T.H. 2008. Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research 90(1–3): 26-35.

Suthers, I.M., Fraser, A. & Frank, K.T. 1992. Comparison of lipid, otolith and morphometric condition indicies of pelagic juvenile cod Gadus morhua from the Canadian Atlantic. Marine Ecology Progress Series 84: 31-40.

Sweeney, J.M. & Harvey, J.T. 2011. Diet estimation in California sea lions, Zalophus californianus. Marine Mammal Science 27(4): 279-301.

Tournois, J., Ferraton, F., Velez, L., McKenzie, D.J., Aliaume, C., Mercier, L. & Darnaude, A.M. 2013. Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats. Estuarine, Coastal and Shelf Science 131(0): 182-193.

Turan, C. 2006. The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology 69: 165-180.

Tuset, V.M., Rosin, P.L. & Lombarte, A. 2006. Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research 81(2-3): 316-325.

Veinott, G., Westley, P.A.H., Warner, L. & Purchase, C.F. 2012. Assigning origins in a potentially mixed-stock recreational sea trout (Salmo trutta) fishery. Ecology of Freshwater Fish 21(4): 541-551.

Volpedo, A. & Echeverr?, D.D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research 60(2–3): 551-560.

Wells, R.J.D., Kohin, S., Teo, S.L.H., Snodgrass, O.E. & Uosaki, K. 2013. Age and growth of North Pacific albacore (Thunnus alalunga): Implications for stock assessment. Fisheries Research 147(0): 55-62.

Wenzel, F.W., Polloni, P.T., Craddock, J.E., Gannon, D.P., Nicolas, J.R., Read, A.J. & Rosel, P.E. 2013. Food habits of Sowerby’s beaked whales (Mesoplodon bidens) taken in the pelagic drift gillnet fishery of the western North Atlantic. Fishery Bulletin 111(4): 381-389.

 

 

*Corresponding author; email: khloh@um.edu.my

 

 

 

previous