Sains Malaysiana 45(9)(2016): 1363–1370
Tocotrienol-Rich Fraction Supplementation
Modulates Antioxidant Enzymes Activity and Reduces DNA Damage in APPswe/PS1dE9
Alzheimer’s Disease Mouse Model
(Suplementasi Fraksi Kaya Tokotrienol Memodulasi
Aktiviti Enzim Antioksidan dan Mengurangkan Kerosakan DNA pada APPswe/PS1dE9 Model Mencit Penyakit Alzheimer)
H.A. DAMANHURI1,2*,
N.I.
ABDUL
RAHIM1,
W.N.W.
NASR1I, J.K.
TAN1,
S.
MAKPOL1,
M. MAZLAN3,
I.
TOOYAMA4
& W.Z. WAN
NGAH1,2
1Biochemistry Department, Faculty
of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2UKM Medical Molecular Biology Institute,
Jalan Yaakob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory,
Malaysia
3Faculty of Medicine, Universiti
Teknologi MARA, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul
Ehsan, Malaysia
4Molecular Neuroscience Research
Centre, Shiga University of Medical Sciences, Seta Tsukinowacho,
Otsu 520-2192, Shiga, Japan
Received: 21 December 2015/Accepted:
29 April 2016
ABSTRACT
Alzheimer’s disease (AD)
is a progressive neurodegenerative disorder characterized by deterioration
of the brain functions that result in impairment of memory, cognition
and behavioural functions. Oxidative stress is well known to be
one of the causative factors for AD. Thus this disease is potentially
modulated by natural antioxidants such as vitamin E. The aim of
this study was to evaluate the effect of tocotrienol-rich fraction
(TRF)
supplementation on antioxidant enzymes and DNA damage
using APPswe/PS1dE9 transgenic mouse model
of AD. Animals were supplemented with TRF (200
mg/kg) or alpha-tocopherol (αT) (200 mg/kg) for
six months starting from nine months old. We found that superoxide
dismutase (SOD)
activity in AD mouse was decreased by supplementation of TRF
and αT as compared with AD control mouse with no significant
differences in glutathione peroxidise (GPx) activity in all groups. TRF
supplementation significantly increased catalase (CAT) activity. The level of DNA
damage of AD mouse shows significant decrease with supplementation
of TRF and αT. In conclusion, TRF was
able to modulate antioxidant enzymes activity and decreased the
level of DNA
damage of AD transgenic mouse model.
Keywords: Alzheimer’s disease;
oxidative status; tocotrienol-rich fraction
ABSTRAK
Penyakit Alzheimer (AD)
adalah gangguan progresif neurodegeneratif yang boleh dicirikan
dengan kemerosotan fungsi otak yang mengakibatkan kerosakan ingatan,
kognitif dan fungsi tingkah laku. Tekanan oksidatif terkenal sebagai
salah satu faktor penyebab AD. Oleh itu penyakit ini berpotensi dimodulasikan oleh
antioksidan semula jadi seperti vitamin E. Kajian ini bertujuan
menilai kesan suplementasi fraksi kaya tokotrienol (TRF) ke atas enzim antioksidan
dan kerosakan DNA menggunakan APPswe/PS1dE9
model mencit transgenik AD. Model haiwan ini telah diberi suplementasi
TRF (200 mg/kg) atau αT (200 mg/kg) selama enam bulan
dari usia sembilan bulan. Keputusan menunjukkan aktiviti SOD menurun
pada mencit AD yang telah disuplementasi dengan TRF dan
αT berbanding dengan mencit AD kawalan. Tiada perbezaan signifikan
dalam aktiviti GPx dalam semua kumpulan. Manakala mencit
AD yang diberi suplementasi TRF menunjukkan
peningkatan ketara dalam aktiviti CAT. Daripada segi kerosakan DNA,
suplementasi TRF dan αT menunjukkan penurunan ketara pada mencit
AD.
Kesimpulannya, TRF berpotensi untuk memodulasi aktiviti
enzim antioksidan dan mengurangkan tahap kerosakan DNA model
mencit transgenik AD.
Kata kunci: Fraksi kaya tokotrienol; penyakit Alzheimer; status oksidatif
REFERENCES
Abd
Hamid, N.A., Hasrul, M.A., Ruzanna, R.J., Ibrahim, I.A., Baruah,
P.S., Mazlan, M., Yusof, Y.A. & Ngah, W.Z. 2011. Effect of vitamin
E (Tri E(R)) on antioxidant enzymes and DNA damage in rats following
eight weeks exercise. Nutrition Journal 10: 37.
Abdul
Hafid, S.R., Chakravarthi, S., Nesaretnam, K. & Radhakrishnan,
A.K. 2013. Tocotrienol-adjuvanted dendritic cells inhibit tumor
growth and metastasis: A murine model of breast cancer. PLoS
One 8(9): e74753.
Aliahmat,
N.S., Noor, M.R., Yusof, W.J., Makpol, S., Ngah, W.Z. & Yusof,
Y.A. 2012. Antioxidant enzyme activity and malondialdehyde levels
can be modulated by Piper betle, tocotrienol rich fraction
and Chlorella vulgaris in aging C57BL/6 mice. Clinics
(Sao Paulo) 67(12): 1447-1454.
Alzheimer’s
Disease International. 2013. Policy Brief for Heads of Government:
The Global Impact of Dementia 2013-2050. London: Alzheimer’s
Disease International.
Anderson,
A.J., Su, J.H. & Cotman, C.W. 1996. DNA damage and apoptosis
in Alzheimer’s disease: Colocalization with c-Jun immunoreactivity,
relationship to brain area, and effect of postmortem delay. Journal
of Neuroscience 16(5): 1710-1719.
Butterfield,
D.A., Reed, T., Newman, S.F. & Sultana, R. 2007. Roles of amyloid
beta-peptide-associated oxidative stress and brain protein modifications
in the pathogenesis of Alzheimer’s disease and mild cognitive impairment.
Free Radical Biology & Medicine 43(5): 658-677.
Chauhan,
V. & Chauhan, A. 2006. Oxidative stress in Alzheimer’s disease.
Pathophysiology 13(3): 195-208.
Chin,
S.F., Ibahim, J., Makpol, S., Abdul Hamid, N.A., Abdul Latiff, A.,
Zakaria, Z., Mazlan, M., Mohd Yusof, Y.A., Abdul Karim, A. &
Wan Ngah, W.Z. 2011. Tocotrienol rich fraction supplementation improved
lipid profile and oxidative status in healthy older adults: A randomized
controlled study. Nutrition Metabolism (Lond) 8(1): 42.
Chin,
S.F., Hamid, N.A., Latiff, A.A., Zakaria, Z., Mazlan, M., Yusof,
Y.A., Karim, A.A., Ibahim, J., Hamid, Z. & Ngah, W.Z. 2008.
Reduction of DNA damage in older healthy adults by Tri E Tocotrienol
supplementation. Nutrition 24(1): 1-10.
De
Leo, M.E., Borrello, S., Passantino, M., Palazzotti, B., Mordente,
A., Daniele, A., Filippini, V., Galeotti, T. & Masullo, C. 1998.
Oxidative stress and overexpression of manganese superoxide dismutase
in patients with Alzheimer’s disease. Neuroscience Letters 250(3):
173-176.
Feng,
Y. & Wang, X. 2012. Antioxidant therapies for Alzheimer’s disease.
Oxidative Medicine and Cellular Longevity 2012: 472932.
Grand,
J.H., Caspar, S. & Macdonald, S.W. 2011. Clinical features and
multidisciplinary approaches to dementia care. Journal of Multidiscipinary
Healthcare 4: 125-147.
Hafid,
S.R., Radhakrishnan, A.K. & Nesaretnam, K. 2010. Tocotrienols
are good adjuvants for developing cancer vaccines. BMC Cancer
10: 5.
Hensley,
K., Carney, J.M., Mattson, M.P., Aksenova, M., Harris, M., Wu, J.F.,
Floyd, R.A. & Butterfield, D.A. 1994. A model for beta-amyloid
aggregation and neurotoxicity based on free radical generation by
the peptide: Relevance to Alzheimer disease. Proceedings of the
National Academy of Sciences USA 91(8): 3270-3274.
Hong,
X., Liu, J., Zhu, G., Zhuang, Y., Suo, H., Wang, P., Huang, D.,
Xu, J., Huang, Y., Yu, M., Bian, M., Sheng, Z., Fei, J., Song, H.,
Behnisch, T. & Huang, F. 2013. Parkin overexpression ameliorates
hippocampal long-term potentiation and β-amyloid load in an
Alzheimer’s disease mouse model. Human Molecular Genetics 23(4):
1056-1072.
Jankowsky,
J.L., Fadale, D.J., Anderson, J., Xu, G.M., Gonzales, V., Jenkins,
N.A., Copeland, N.G., Lee, M.K., Younkin, L.H., Wagner, S.L., Younkin,
S.G. & Borchelt, D.R. 2004. Mutant presenilins specifically
elevate the levels of the 42 residue β-amyloid peptide in vivo:
Evidence for augmentation of a 42-specific γ secretase. Human
Molecular Genetics 13(2): 159-170.
Jankowsky,
J.L., Slunt, H.H., Ratovitski, T., Jenkins, N.A., Copeland, N.G.
& Borchelt, D.R. 2001. Co-expression of multiple transgenes
in mouse CNS: A comparison of strategies. Biomolecular Engineering
17(6): 157-165.
Jiao,
Y., Zhang, Y., Wei, Y., Liu, Z., An, W. & Guo, M. 2012. Direct
observation of internalization and ROS generation of amyloid β-Peptide
in neuronal cells at subcellular resolution. ChemBioChem 13:
2335-2338.
Kuhad,
A., Bishnoi, M., Tiwari, V. & Chopra, K. 2009. Suppression of
NF-κβ signaling pathway by tocotrienol can prevent diabetes
associated cognitive deficits. Pharmacology Biochemistry and
Behavior 92(2): 251-259.
Lesuisse,
C., Xu, G., Anderson, J., Wong, M., Jankowsky, J., Holtz, G., Gonzalez,
V., Wong, P.C.Y., Price, D.L., Tang, F., Wagner, S. & Borchelt,
D.R. 2001. Hyper-expression of human apolipoprotein E4 in astroglia
and neurons does not enhance amyloid deposition in transgenic mice.
Human Molecular Genetics 10(22): 2525-2537.
Lovell,
M.A., Ehmann, W.D., Butler, S.M. & Markesbery, W.R. 1995. Elevated
thiobarbituric acid-reactive substances and antioxidant enzyme activity
in the brain in Alzheimer’s disease. Neurology 45(8): 1594-1601.
Lyras,
L., Cairns, N.J., Jenner, A., Jenner, P. & Halliwell, B. 1997.
An assessment of oxidative damage to proteins, lipids, and DNA in
brain from patients with Alzheimer’s Disease. Journal of Neurochemistry
68(5): 2061-2069.
Makpol,
S., Yeoh, T.W., Ruslam, F.A., Arifin, K.T. & Yusof, Y.A. 2013.
Comparative effect of Piper betle, Chlorella vulgaris
and tocotrienol-rich fraction on antioxidant enzymes activity
in cellular ageing of human diploid fibroblasts. BMC Complementary
and Alternative Medicine 13: 210.
Makpol,
S., Durani, L.W., Chua, K.H., Mohd Yusof, Y.A. & Ngah, W.Z.
2011. Tocotrienol-rich fraction prevents cell cycle arrest and elongates
telomere length in senescent human diploid fibroblasts. Journal
of Biomedicine and Biotechnology 2011: 506171.
Mao,
P., Manczak, M., Calkins, M.J., Truong, Q., Reddy, T.P., Reddy,
A.P., Shirendeb, U., Lo, H.H., Rabinovitch, P.S. & Reddy, P.H.
2012. Mitochondria-targeted catalase reduces abnormal APP processing,
amyloid beta production and BACE1 in a mouse model of Alzheimer’s
disease: Implications for neuroprotection and lifespan extension.
Human Molecular Genetics 21(13): 2973-2990.
Marcus,
D.L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J.S., Strafaci,
J.A. & Freedman, M.L. 1998. Increased peroxidation and reduced
antioxidant enzyme activity in Alzheimer’s disease. Experimental
Neurology 150(1): 40-44.
Mecocci,
P., Polidori, M.C., Cherubini, A., Ingegni, T., Mattioli, P., Catani,
M., Rinaldi, P., Cecchetti, R., Stahl, W., Senin, U. & Beal,
M.F. 2002. Lymphocyte oxidative DNA damage and plasma antioxidants
in Alzheimer disease. Archives of Neurology 59(5): 794-798.
Moneim,
A.E. 2015. Oxidant/antioxidant imbalance and the risk of Alzheimer’s
disease. Current Alzheimer Research 12(4): 335-349.
Mullaart,
E., Boerrigter, M.E., Ravid, R., Swaab, D.F. & Vijg, J. 1990.
Increased levels of DNA breaks in cerebral cortex of Alzheimer’s
disease patients. Neurobiology of Aging 11(3): 169-173.
Nagapan,
G., Meng Goh, Y., Shameha Abdul Razak, I., Nesaretnam, K. &
Ebrahimi, M. 2013. The effects of prenatal and early postnatal tocotrienol-rich
fraction supplementation on cognitive function development in male
offspring rats. BMC Neuroscience 14: 77.
Nakashima,
H., Ishihara, T., Yokota, O., Terada, S., Trojanowski, J.Q., Lee,
V.M. & Kuroda, S. 2004. Effects of alpha-tocopherol on an animal
model of tauopathies. Free Radical Biology & Medicine 37(2):
176-186.
Padurariu,
M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W. & Stefanescu,
C. 2010. Changes of some oxidative stress markers in the serum of
patients with mild cognitive impairment and Alzheimer’s disease.
Neuroscience Letters 469(1): 6-10.
Perrin,
R., Briancon, S., Jeandel, C., Artur, Y., Minn, A., Penin, F. &
Siest, G. 1990. Blood activity of Cu/Zn superoxide dismutase, glutathione
peroxidase and catalase in Alzheimer’s disease: A case-control study.
Gerontology 36(5-6): 306-313.
Rahman,
A.A., Makpol, S., Jamal, R., Harun, R., Mokhtar, N. & Ngah,
W.Z. 2014. Tocotrienol-rich fraction, [6]-gingerol and epigallocatechin
gallate inhibit proliferation and induce apoptosis of glioma cancer
cells. Molecules 19(9): 14528- 14541.
Resende,
R., Moreira, P.I., Proenca, T., Deshpande, A., Busciglio, J., Pereira,
C. & Oliveira, C.R. 2008. Brain oxidative stress in a triple-transgenic
mouse model of Alzheimer disease. Free Radical Biology &
Medicie 44(12): 2051-2057.
Rinaldi,
P., Polidori, M.C., Metastasio, A., Mariani, E., Mattioli, P., Cherubini,
A., Catani, M., Cecchetti, R., Senin, U. & Mecocci, P. 2003.
Plasma antioxidants are similarly depleted in mild cognitive impairment
and in Alzheimer’s disease. Neurobiology of Aging 24(7):
915-919.
Rodriguez, C., Mayo, J.C., Sainz, R.M., Antolin, I., Herrera, F.,
Martin, V. & Reiter, R.J. 2004. Regulation of antioxidant enzymes:
A significant role for melatonin. Journal of Pineal Research
36(1): 1-9.
Schrag, M., Mueller, C., Zabel,
M., Crofton, A., Kirsch, W.M., Ghribi, O., Squitti, R. & Perry,
G. 2013. Oxidative stress in blood in Alzheimer’s disease and mild
cognitive impairment: A meta-analysis. Neurobiology of Disease
59: 100-110.
Sen, C.K., Khanna, S. & Roy,
S. 2006. Tocotrienols: Vitamin E beyond tocopherols. Life Science
78(18): 2088-2098.
Sen, C.K., Khanna, S., Roy, S. &
Packer, L. 2000. Molecular basis of vitamin E action. Tocotrienol
potently inhibits glutamate-induced pp60(c-Src) kinase activation
and death of HT4 neuronal cells. The Journal of Biological Chemistry
275(17): 13049-13055.
Singh, N.P., McCoy, M.T., Tice,
R.R. & Schneider, E.L. 1988. A simple technique for quantitation
of low levels of DNA damage in individual cells. Experimental
Cell Research 175: 184-191.
Smith, D.G., Cappai, R. & Barnham,
K.J. 2007. The redox chemistry of the Alzheimer’s disease amyloid
beta peptide. Biochimica et Biophysica Acta 1768(8): 1976-1990.
Srivastava, J.K. & Gupta, S.
2006. Tocotrienol-rich fraction of palm oil induces cell cycle arrest
and apoptosis selectively in human prostate cancer cells. Biochemical
and Biophysical Research Communications 346(2): 447-453.
Taib, I.S., Budin, S.B., Ghazali,
A.R., Jayusman, P.A., Louis, S.R. & Mohamed, J. 2015. Palm oil
tocotrienol-rich fraction attenuates testicular toxicity induced
by fenitrothion via an oxidative stress mechanism. Toxicology
Research 4(1): 132-142.
Taridi, N.M., Abd Rani, N., Abd
Latiff, A., Ngah, W.Z. & Mazlan, M. 2014. Tocotrienol rich fraction
reverses age-related deficits in spatial learning and memory in
aged rats. Lipids 49(9): 855-869.
Taridi, N.M., Yahaya, M.F., Teoh,
S.L., Latiff, A.A., Ngah, W.Z., Das, S. & Mazlan, M. 2011. Tocotrienol
rich fraction (TRF) supplementation protects against oxidative DNA
damage and improves cognitive functions in Wistar rats. Clinical
Terapeuthics 162(2): 93-98.
Wang, X., Wang, W., Li, L., Perry,
G., Lee, H.G. & Zhu, X. 2014. Oxidative stress and mitochondrial
dysfunction in Alzheimer’s disease. Biochimica et Biophysica
Acta 1842: 1240-1247.
Yap, W.N., Chang, P.N., Han, H.Y.,
Lee, D.T., Ling, M.T., Wong, Y.C. & Yap, Y.L. 2008. Gamma-tocotrienol
suppresses prostate cancer cell proliferation and invasion through
multiple-signalling pathways. British Journal of Cancer 99(11):
1832-1841.
Zhang, W., Bai, M., Xi, Y., Hao,
J., Liu, L., Mao, N., Su, C., Miao, J. & Su, C. 2012. Early
memory deficits precede plaque deposition in APPswe/PS1dE9 mice:
Involvement of oxidative stress and cholinergic dysfunction. Free
Radical Biology & Medicine 52: 1443-1452.
Zhang, J.S., Zhang, S.J., Li, Q.,
Liu, Y.H., He, N., Zhang, J., Zhou, P.H., Li, M., Guan, T. &
Liu, J.R. 2015. Tocotrienol-rich fraction (TRF) suppresses the growth
of human colon cancer xenografts in balb/C nude mice by the Wnt
pathway. Plos One 10(3): e0122175.
Zhao, Y. & Zhao, B. 2013. Oxidative
stress and the pathogenesis of Alzheimer’s disease. Oxidative
Medicine and Cellular Longevity 2013: 316523.
*Corresponding author;
email: hanafi.damanhuri@ppukm.ukm.edu.my
|