Sains Malaysiana 46(10)(2017):
2007–2017
http://dx.doi.org/10.17576/jsm-2017-4610-40
Differential Transformation Method (DTM) for
Solving SIS and SI Epidemic
Models
(Kaedah Transformasi
Pembezaan (DTM) untuk Menyelesaikan Model Epidemik SIS dan SI)
M.Z.
AHMAD1*,
D.
ALSARAYREH1,
A.
ALSARAYREH1
& I. QARALLEH2
1Institute of Engineering Mathematics,
Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau, Perlis Indera Kayangan, Malaysia
2Department
of Mathematics, Tafila Technical University,
Tafila 66110, Jordan
Received:
23 May 2016/Accepted: 13 February 2017
ABSTRACT
In this paper, the differential
transformation method (DTM) is employed to find the semi-analytical
solutions of SIS and SI epidemic models for
constant population. Firstly, the theoretical background of
DTM is
studied and followed by constructing the solutions of SIS and
SI
epidemic models. Furthermore, the convergence
analysis of DTM
is proven by proposing two theorems. Finally,
numerical computations are made and compared with the exact
solutions. From the numerical results, the solutions produced
by DTM approach the exact solutions which agreed with the proposed
theorems. It can be seen that the DTM is
an alternative technique to be considered in solving many practical
problems involving differential equations.
Keywords: Differential
transformation method (DTM); exact solution; semi-analytical
solution; SIS model; SI model
ABSTRAK
Dalam kajian ini,
kaedah transformasi pembezaan (DTM) telah
digunakan untuk
mencari penyelesaian separuh-analisis bagi model epidemik SIS dan
SI
untuk populasi
malar. Pertama, latar belakang
teori DTM telah
dikaji dan
diikuti dengan membina penyelesaian bagi model epidemik SIS
dan SI. Selain itu,
analisis konvergensi
DTM
telah dibuktikan melalui cadangan dua teorem. Akhir sekali, pengiraan berangka dibuat dan dibandingkan dengan penyelesaian tepat. Daripada keputusan berangka, penyelesaian yang diperoleh melalui DTM adalah
hampir sama
dengan penyelesaian
tepat yang bersetuju dengan teorem yang dicadangkan. Boleh dikatakan bahawa
DTM
adalah satu
teknik alternatif yang boleh dipertimbangkan untuk menyelesaikan banyak masalah praktikal yang melibatkan persamaan pembezaan.
Kata kunci: Kaedah
transformasi pembezaan
(DTM);
model SIS; model SI; penyelesaian
tepat; penyelesaian
separuh-analitik
REFERENCES
Abazari,
R. & Borhanifar, A. 2010. Numerical study of the solution of the Burgers and coupled Burgers
equations by a differential transformation method. Computers
& Mathematics with Applications 59(8): 2711-2722.
Abbasov,
A. & Bahadir, A.R. 2005. The investigation of the transient regimes in the nonlinear systems
by the generalized classical method. Mathematical
Problems in Engineering 2005(5): 503-519.
Abubakar,
S., Akinwande, N.I., Jimoh,
O.R., Oguntolu, F.A. & Ogwumu,
O.D. 2013. Approximate solution of SIR infectious
disease model using homotopy perturbation
kethod (HPM). The Pacific Journal of Science &
Technology 14(2): 163-169.
Akinboro,
F.S., Alao, S. & Akinpelu,
F.O. 2014. Numerical solution of SIR model using differential
transformation method and variational
iteration method. General Mathematics Notes 22(2): 82-92.
Alomari,
A.K. 2011. New analytical solution for fractional
chaotic dynamical systems using the differential transformation
method. Computer and Mathematics with Applications
61(9): 2528-2534.
Arikoglu,
A. & Ozkol, I. 2007. Solution of fractional differential equations by using differential
transformation method. Chaos, Solitons & Fractals
34(5): 1473-1481.
Arikoglu,
A. & Ozkol, I. 2006. Solution of difference equations by using differential transformation
method. Applied Mathematics & Computation 174(2):
1216-1228.
Ayaz,
A. 2004. Solutions of the systems of differential equations
by differential transform method. Applied Mathematics &
Computation 147(2): 547-567.
Batiha,
K. & Batiha, B. 2011. A new algorithm for solving linear ordinary differential equations.
World Applied Sciences Journal 15(12): 1774-1779.
Borhanifar,
A. & Abazari, R. 2011. Exact solutions for non-linear Schrödinger equations by differential
transformation method. Journal of Applied Mathematics
& Computing 35(1): 37-51.
Chen,
C.L. & Liu, Y.C. 1998. Solution of two point
boundary value problems using the differential transformation
method. Journal of Optimization Theory & Applications
99(1): 23-35.
Chen,
C.K. & Ho, S.H. 1996. Application of differential
transformation to eigenvalue problems. Applied Mathematics
& Computation 79(2-3): 173-188.
Hassan,
I.A.H. 2008. Application to differential transformation
method for solving systems of differential equations.
Applied Mathematical Modelling 32(12): 2552-2559.
Hassan,
I.A.H. & Ertürk, V.S. 2007. Applying differential transformation method to the one-dimensional
planar bratu problem. Contemporary
Engineering Sciences 2(30): 1493- 1504.
Jang,
M.J. & Chen, C.L. 1997. Analysis of the response of a strongly
nonlinear damped system using a differential transformation
technique. Applied Mathematics & Computation 88(2-3):
137-151.
Jing,
H. & Zhu, D. 2005. Global stability and
periodicity on SIS epidemic models with backward bifurcation.
Computers & Mathematics with Applications 50(8-9):
1271-1290.
Kermack,
W.O. & McKendrick, A.G. 1927. A contribution to the mathematical theory of epidemics. In
Proceedings of the Royal Society of London A: Mathematical,
Physical & Engineering Sciences 115(772): 700-721.
Khan,
H., Mohapatra, R.N., Vajravelu,
K. & Liao, S.J. 2009. The explicit series
solution of SIR and SIS epidemic models. Applied Mathematics
& Computation 215(2): 653-669.
Korobeinikov,
A. & Wake, G.C. 2002. Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological
models. Applied Mathematics Letter
15(8): 955-960.
Momani,
S., Odibat, Z. & Hashim,
I. 2008. Algorithms for nonlinear fractional partial differantial equations: A selection of numerical methods.
Topological Method in Nonlinear Analysis 31: 211-226.
Nazari, D.
& Shahmorad, S. 2010. Application
of the fractional differential transform method to fractional
order integro-differential equations with nonlocal boundary conditions.
Journal of Computational & Applied Mathematics 234(3):
883-891.
Nucci,
M.C. & Leach, P.G.L. 2004. An integrable SIS model. Journal of Mathematical
Anaysis & Appication
290(2): 506-518.
Odibat,
Z.M. 2008. Differential transformation method
for solving Volterra integral equations
with separable kernels. Mathematical & Computational
Modelling 48(7-8): 1144- 1149.
Pietro,
G.C. 2007. How mathematical models have helped to improve understanding
the epidemiology of infection. Early Human Development 83(3):
141-148.
Shabbir,
G., Khan, H. & Sadiq, M.A. 2010. A note on exact solution of SIR and SIS epidemic models. arXiv preprint arXiv: 1012.5035.
Soltanalizadeh, B.
& Branch, S. 2012. Application of differential transformation
method for solving a fourth-order parabolic
partial differential equations. International Journal of
Pure & Applied Mathematics 78(3): 299-308.
Tari,
A., Rahimi, M.Y., Shahmorad,
S. & Talati, F. 2009. Solving
a class of two-dimensional linear and nonlinear Volterra
integral equations by the differential transform method.Journal
of Computational & Applied Mathematics 228(1): 70-76.
Yicang,
Z. & Liu, H. 2003. Stability of periodic
solutions for an SIS model with pulse vaccination. Mathematical
& Computational Modelling 38(3-4): 299-308.
Zhien,
M., Liu, J. & Li, J. 2003. Stability analysis
for differential infectivity epidemic models. Nonlinear
Analysis: Real World Applications 4(5): 841-856.
Zhou,
J.K. 1986. Differential transformation and
its applications for electrical circuits. Huazhong University Press, Wuhan, China.
*Corresponding author; email: mzaini.imk@gmail.com