Sains Malaysiana 46(11)(2017): 2061-2074

http://dx.doi.org/10.17576/jsm-2017-4611-06

 

 Experimental Study on Propagation and Attenuation Regularity ofLandslide Surge

(Kajian Uji Kaji ke atas Ketetapan Perambatan dan Pemerosotan Pusuan Gelongsoran Tanah)

FUXING ZU1, PINGYI WANG1, JIQING XU1 & LIQUAN XIE2*

 

1School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

 

2Department of Hydraulic Engineering, Tongji University, Shanghai 200092, China

 

Received: 10 January 2017/Accepted: 16 May 2017

 

ABSTRACT

On the basis of landslide surge model test by adopting generalized simulation of waterways, this paper, for the first time, established a four-dimensional mathematical model between wave height transmissibility rate and the initial wave height, water depth, azimuth angle as well as propagation distance through utilizing the method of tensor space mapping. Using the new model, we proposed an empirical wave field covering all areas of the channel including the attenuation area within the width of a landslide mass, the straight channel attenuation area outside the width of the landslide mass, the curved channel attenuation area and the after-curve attenuation area, which comprehensively reflects the progressive changes of surge wave factors. The transmissibility of wave height and propagation distance are in a bivariate negative exponential distribution, and the wave height gradually reduces and the attenuation also slows down as the propagation distance increases; wave height transmissibility rate, azimuth and propagation distance are in a trivariate negative exponential distribution, the attenuation of the wave height in the straight channel within the width of the landslide mass was the slowest, followed by that of wave in the straight channel outside the width of the landslide mass, and the attenuation of the wave height in the curved channel is the greatest. This empirical wave field was based on test data, scientifically abstracted the general regularity of the propagation and attenuation of landslide surge, which can be applied to similar analyses and forecasts on landslide surge and can scientifically and accurately determine the damage range of landslide surge.

 

Keywords: Attenuation regularity; damage range; empirical wave field; four-dimensional mathematical model; landslide surge; propagation regularity; tensor space mapping

 

ABSTRAK

Berdasarkan ujian model pusuan gelongsoran tanah dengan menggunakan simulasi menyeluruh laluan air, untuk pertama kali dalam kertas ini, dibangunkan sebuah model matematik empat dimensi antara kadar ketersebaran ketinggian ombak dan ketinggian gelombang pemula, kedalaman air, sudut azimuth serta jarak perambatan melalui penggunaan kaedah pemetaan ruang tensor. Menggunakan model baru ini, kami cadangkan bidang gelombang empirik meliputi semua kawasan saluran termasuk kawasan pemerosotan dalam lingkungan lebar jisim gelongsoran tanah, saluran lurus kawasan pemerosotan di luar kelebaran jisim gelongsoran tanah, saluran lengkung kawasan pemerosotan dan kawasan pemerosotan selepas lengkung, yang secara menyeluruh menunjukkan perubahan progresif faktor pusuan gelombang. Ketersebaran ketinggian ombak dan jarak perambatan adalah dalam agihan eksponen negatif bivariat serta ketinggian gelombang secara beransur-ansur berkurang dan pemerosotan juga semakin berkurang apabila jarak perambatan meningkat; kadar ketersebaran ketinggian gelombang, jarak antara azimut dan perambatan berada dalam taburan trivariat negatif eksponen, pemerosotan ketinggian ombak di saluran lurus dalam lebar jisim gelongsoran tanah adalah paling lambat, diikuti dengan ombak di saluran lurus di luar lebar jisim gelongsoran tanah dan pemerosotan ketinggian ombak di saluran lengkung adalah terbaik. Bidang gelombang empirik ini adalah berdasarkan data ujian, diabstrak secara saintifik dengan ketetapan umum perambatan dan pemerosotan pusuan gelongsoran tanah, yang boleh digunakan untuk analisis dan ramalan tentang pusuan gelongsoran tanah yang sama dan secara saintifik dan tepat menentukan julat kerosakan pusuan gelongsoran tanah.

Kata kunci: pusuan gelongsoran tanah; ketetapan perambatan; ketetapan pemerosotan, pemetaan ruang tensor; model matematik empat dimensi; bidang gelombang empirik; julat kerosakan

REFERENCES

Anis Syuhada Mohd Saidi, Sarani Zakaria, Chin Hua Chia, Sharifah Nabihah Syed Jaafar & Farah Nadia Mohammad Padzil. 2016. Physico-mechanical properties of kenaf pulp cellulose membrane cross-linked with glyoxa. Sains Malaysiana 45(2): 263-270.

Ataie-Ashtiani, B. & Nik-Khah, A. 2008. Impulsive waves caused by subaerial landslides. Journal of the Environ. Fluid Mech. 8(7): 263-280.

de Carvalho, R.F. 2007. Landslides into reservoirs and their impacts on banks. Journal of the Environ. Fluid Mech. 7(2): 481-493.

Di Riso, M., De Girolamo, P., Bellotti, G., Panizzo, A., Aristodemo, F., Molfetta, M.G. & Petrillo, A.F. 2009a. Landslide-generated tsunamis runup at the coast of a conical island: New physical model experiments. Journal of Geophysical Research 114(C1): doi. 10.1029/2008JC004858.

Di Riso, M., Bellotti, G. & Panizzo, A. 2009b. Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering 56: 659-667.

Flugge, W. 1972. Tensor Analysis and Continuum Mechanics. New York: Springer-Verlag.

FritZ, H.M., Hager, W.H. & Minor, H.E. 2004. Near field characteristics of landslide generated impulse waves. Journal of the Waterway Port Coastal and Ocean Division, ASCE 130(6): 287-302.

Fritz, H.M., Hager, W.H. & Minor, H.E. 2003. Landslide generated impulse waves. 1. Instantaneous flow fields. Journal of the Experiments in Fluids 35(l): 505-519.

Heinrich, R., Guibourge, S., Mangeney, A. & Roche, R. 1999. Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano. Phys. Chem. Earth (A) 24(2): 163-168.

Heller, V., Hager, W.H. & Minor, H.E. 2008. Seale effects in subaerial landslide generated impulse waves. Experiments in Fluids 44(5): 691-703.

Kamphuis, J.W. & Bowering, R.J. 1971. Impulse waves generated by landslides. ASCE, Proceedings of the 12th Coastal Engineering Conference. 1: 689-699.

Li, H.Z., Pan, Y.Z., Wang, T.L., et al., 2006. Analysis on the causes and mechanism of Qianjiangping landslide in the Three Gorges Reservoir area. Yangtze River 37(7): 12-14.

Li Yusheng, Jipazi 1988. Landslide - A real case of reactivation of an old landslide in the Three Gorges area of the Yangtze River. Beijing: Science Press. pp. 323-328.

Md Pauzi Abdullah, Syafinaz Salleh, Rahmah Elfithri, Mazlin bin Mokhtar, Mohd Ekhwan Toriman, Ahmad Fuad Embi, Khairul Nizam Abdul Maulud, Maimon Abdullah, Lee Yook Heng, Syamimi Halimshah, Maizura Maizan & Nurlina Mohamad Ramzan. 2017. Stakeholders’ response and perspectives on flood disaster of Pahang river basin. Malaysian Journal of Geoscience 1(1): 43-49.

Mustaffa Kamal Shuib, Mohammad Abdul Manap, Felix Tongkul, Ismail Bin Abd Rahim, Tajul Anuar Jamaludin, Noraini Surip, Rabieahtul Abu Bakar, Mohd Rozaidi Che Abas, Roziah Che Musa & Zahid Ahmad. 2017. Active faults in Peninsular Malaysia with emphasis on active geomorphic features of Bukit Tinggi region. Malaysian Journal of Geoscience. 1(1): 13-26.

Noda, E. 1970. Water waves generated by landslides. Journal of the Waterways, Harbors and Coastal Engineering Division 96(4): 835-855.

Panizzo, A., Bellotti, G. & De Girolamo, P. 2002. Application of wavelet transform analysis to landslide generated waves. Coastal Engineering 44: 321-338. Rvadkiewicz, S.A., Marietti, C. & Heinrieh, P. 1996. Modelling of submarine landslides and generated water waves. Phys. Chem. Earth 21(12): 7-12.

Slingerland, R. & Paolo, B.V. 1982. Evaluating hazard of landslide-induced water waves. Journal of the Waterway Port Coastal and Ocean Division 108(4): 504-512.

Wang Yang. 2005. Research on Reservoir Bank Landslide Velocity and Its Surge Disaster. China University of Geosciences.

Watts, P., Grilli, S.T., Tappin, D.R. & Fryer, G.J. 2005. Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of the Waterway Port Coastal and Ocean Division, ASCE 131(6): 298-310.

Wiezorek, G.F., Matthias, J., Motyka, R.J., Zirnheld, S.L. & Craw, P. 2003. Preliminary Assessment of Landslide-induced Wave Hazards: Tidal Inlet, Glacier Bay National Park, Alaska. U.S. Geological Survey Open-File Report 03-100: U.S. Department of the Interior and U.S. Geological Survey.

Xue, G., Guifang, L.V. & Jiang, R. 1988. Research on Xintan landslide, typical landslide in China. Beijing: Science Press. pp. 200-210.

Yi, W., Meng, Z.P. & Yi, Q.L. 2011. Theory and method of forecasting landslide in the Three Gorges Reservoir area. Beijing: Science Press.

Zhong, L. 1993. Implications of the landslide in Vajont Reservoir, Italy. The Chinese Journal of Geological Hazard and Control 5(2): 77-84.

 

*Corresponding author; email: xie_liquan@tongji.edu.cn

 

 

 

 

 

 

 

previous