Sains Malaysiana 46(11)(2017): 2061-2074
http://dx.doi.org/10.17576/jsm-2017-4611-06
Experimental Study on Propagation and Attenuation
Regularity ofLandslide Surge
(Kajian Uji Kaji ke atas Ketetapan Perambatan dan Pemerosotan
Pusuan Gelongsoran Tanah)
FUXING ZU1, PINGYI WANG1,
JIQING XU1 & LIQUAN XIE2*
1School of River and Ocean Engineering,
Chongqing Jiaotong University, Chongqing 400074, China
2Department of Hydraulic Engineering,
Tongji University, Shanghai 200092, China
Received: 10 January
2017/Accepted: 16 May 2017
ABSTRACT
On the basis of landslide surge model test by adopting generalized simulation
of waterways, this paper, for the first time, established a
four-dimensional mathematical model between wave height transmissibility
rate and the initial wave height, water depth, azimuth angle
as well as propagation distance through utilizing the method
of tensor space mapping. Using the new model, we proposed an
empirical wave field covering all areas of the channel including
the attenuation area within the width of a landslide mass, the
straight channel attenuation area outside the width of the landslide
mass, the curved channel attenuation area and the after-curve
attenuation area, which comprehensively reflects the progressive
changes of surge wave factors. The transmissibility of wave
height and propagation distance are in a bivariate negative
exponential distribution, and the wave height gradually reduces
and the attenuation also slows down as the propagation distance
increases; wave height transmissibility rate, azimuth and propagation
distance are in a trivariate negative exponential distribution,
the attenuation of the wave height in the straight channel within
the width of the landslide mass was the slowest, followed by
that of wave in the straight channel outside the width of the
landslide mass, and the attenuation of the wave height in the
curved channel is the greatest. This empirical wave field was
based on test data, scientifically abstracted the general regularity
of the propagation and attenuation of landslide surge, which
can be applied to similar analyses and forecasts on landslide
surge and can scientifically and accurately determine the damage
range of landslide surge.
Keywords: Attenuation regularity; damage range; empirical wave field;
four-dimensional mathematical model; landslide surge; propagation
regularity; tensor space mapping
ABSTRAK
Berdasarkan ujian model pusuan gelongsoran tanah dengan
menggunakan simulasi menyeluruh laluan air, untuk pertama kali
dalam kertas ini, dibangunkan sebuah model matematik empat dimensi
antara kadar ketersebaran ketinggian ombak dan ketinggian gelombang
pemula, kedalaman air, sudut azimuth serta jarak perambatan
melalui penggunaan kaedah pemetaan ruang tensor. Menggunakan
model baru ini, kami cadangkan bidang gelombang empirik meliputi
semua kawasan saluran termasuk kawasan pemerosotan dalam lingkungan
lebar jisim gelongsoran tanah, saluran lurus kawasan pemerosotan
di luar kelebaran jisim gelongsoran tanah, saluran lengkung
kawasan pemerosotan dan kawasan pemerosotan selepas lengkung,
yang secara menyeluruh menunjukkan perubahan progresif faktor
pusuan gelombang. Ketersebaran ketinggian ombak dan jarak perambatan
adalah dalam agihan eksponen negatif bivariat serta ketinggian
gelombang secara beransur-ansur berkurang dan pemerosotan juga
semakin berkurang apabila jarak perambatan meningkat; kadar
ketersebaran ketinggian gelombang, jarak antara azimut dan perambatan
berada dalam taburan trivariat negatif eksponen, pemerosotan
ketinggian ombak di saluran lurus dalam lebar jisim gelongsoran
tanah adalah paling lambat, diikuti dengan ombak di saluran
lurus di luar lebar jisim gelongsoran tanah dan pemerosotan
ketinggian ombak di saluran lengkung adalah terbaik. Bidang
gelombang empirik ini adalah berdasarkan data ujian, diabstrak
secara saintifik dengan ketetapan umum perambatan dan pemerosotan
pusuan gelongsoran tanah, yang boleh digunakan untuk analisis
dan ramalan tentang pusuan gelongsoran tanah yang sama dan secara
saintifik dan tepat menentukan julat kerosakan pusuan gelongsoran
tanah.
Kata kunci: pusuan gelongsoran tanah; ketetapan
perambatan; ketetapan pemerosotan, pemetaan ruang tensor; model
matematik empat dimensi; bidang gelombang empirik; julat kerosakan
REFERENCES
Anis Syuhada Mohd Saidi, Sarani
Zakaria, Chin Hua Chia, Sharifah Nabihah Syed Jaafar & Farah
Nadia Mohammad Padzil. 2016. Physico-mechanical properties of
kenaf pulp cellulose membrane cross-linked with glyoxa. Sains
Malaysiana 45(2): 263-270.
Ataie-Ashtiani, B. & Nik-Khah,
A. 2008. Impulsive waves caused by subaerial landslides. Journal
of the Environ. Fluid Mech. 8(7): 263-280.
de Carvalho, R.F. 2007. Landslides
into reservoirs and their impacts on banks. Journal of the
Environ. Fluid Mech. 7(2): 481-493.
Di Riso, M., De Girolamo, P., Bellotti,
G., Panizzo, A., Aristodemo, F., Molfetta, M.G. & Petrillo,
A.F. 2009a. Landslide-generated tsunamis runup at the coast
of a conical island: New physical model experiments. Journal
of Geophysical Research 114(C1): doi. 10.1029/2008JC004858.
Di Riso, M., Bellotti, G. &
Panizzo, A. 2009b. Three-dimensional experiments on landslide
generated waves at a sloping coast. Coastal Engineering 56:
659-667.
Flugge, W. 1972. Tensor Analysis
and Continuum Mechanics. New York: Springer-Verlag.
FritZ, H.M., Hager, W.H. & Minor,
H.E. 2004. Near field characteristics of landslide generated
impulse waves. Journal of the Waterway Port Coastal and Ocean
Division, ASCE 130(6): 287-302.
Fritz, H.M., Hager, W.H. & Minor,
H.E. 2003. Landslide generated impulse waves. 1. Instantaneous
flow fields. Journal of the Experiments in Fluids 35(l):
505-519.
Heinrich, R., Guibourge, S., Mangeney,
A. & Roche, R. 1999. Numerical modeling of a landslide-generated
tsunami following a potential explosion of the Montserrat volcano.
Phys. Chem. Earth (A) 24(2): 163-168.
Heller, V., Hager, W.H. & Minor,
H.E. 2008. Seale effects in subaerial landslide generated impulse
waves. Experiments in Fluids 44(5): 691-703.
Kamphuis, J.W. & Bowering, R.J.
1971. Impulse waves generated by landslides. ASCE, Proceedings
of the 12th Coastal Engineering Conference. 1: 689-699.
Li, H.Z., Pan, Y.Z., Wang, T.L.,
et al., 2006. Analysis on the causes and mechanism of Qianjiangping
landslide in the Three Gorges Reservoir area. Yangtze River
37(7): 12-14.
Li Yusheng, Jipazi 1988. Landslide
- A real case of reactivation of an old landslide in the Three
Gorges area of the Yangtze River. Beijing: Science Press. pp.
323-328.
Md Pauzi Abdullah, Syafinaz Salleh,
Rahmah Elfithri, Mazlin bin Mokhtar, Mohd Ekhwan Toriman, Ahmad
Fuad Embi, Khairul Nizam Abdul Maulud, Maimon Abdullah, Lee
Yook Heng, Syamimi Halimshah, Maizura Maizan & Nurlina Mohamad
Ramzan. 2017. Stakeholders’ response and perspectives on flood
disaster of Pahang river basin. Malaysian Journal of Geoscience
1(1): 43-49.
Mustaffa Kamal Shuib, Mohammad Abdul
Manap, Felix Tongkul, Ismail Bin Abd Rahim, Tajul Anuar Jamaludin,
Noraini Surip, Rabieahtul Abu Bakar, Mohd Rozaidi Che Abas,
Roziah Che Musa & Zahid Ahmad. 2017. Active faults in Peninsular
Malaysia with emphasis on active geomorphic features of Bukit
Tinggi region. Malaysian Journal of Geoscience. 1(1):
13-26.
Noda, E. 1970. Water waves generated
by landslides. Journal of the Waterways, Harbors and Coastal
Engineering Division 96(4): 835-855.
Panizzo, A., Bellotti, G. &
De Girolamo, P. 2002. Application of wavelet transform analysis
to landslide generated waves. Coastal Engineering 44:
321-338. Rvadkiewicz, S.A., Marietti, C. & Heinrieh, P.
1996. Modelling of submarine landslides and generated water
waves. Phys. Chem. Earth 21(12): 7-12.
Slingerland, R. & Paolo, B.V.
1982. Evaluating hazard of landslide-induced water waves. Journal
of the Waterway Port Coastal and Ocean Division 108(4):
504-512.
Wang Yang. 2005. Research on
Reservoir Bank Landslide Velocity and Its Surge Disaster.
China University of Geosciences.
Watts, P., Grilli, S.T., Tappin,
D.R. & Fryer, G.J. 2005. Tsunami generation by submarine
mass failure. II: Predictive equations and case studies. Journal
of the Waterway Port Coastal and Ocean Division, ASCE 131(6):
298-310.
Wiezorek, G.F., Matthias, J., Motyka,
R.J., Zirnheld, S.L. & Craw, P. 2003. Preliminary Assessment
of Landslide-induced Wave Hazards: Tidal Inlet, Glacier Bay
National Park, Alaska. U.S. Geological Survey Open-File
Report 03-100: U.S. Department of the Interior and U.S. Geological
Survey.
Xue, G., Guifang, L.V. & Jiang,
R. 1988. Research on Xintan landslide, typical landslide in
China. Beijing: Science Press. pp. 200-210.
Yi, W., Meng, Z.P. & Yi, Q.L.
2011. Theory and method of forecasting landslide in the Three
Gorges Reservoir area. Beijing: Science Press.
Zhong, L. 1993.
Implications of the landslide in Vajont Reservoir, Italy. The
Chinese Journal of Geological Hazard and Control 5(2): 77-84.
*Corresponding author; email: xie_liquan@tongji.edu.cn