Sains Malaysiana 46(11)(2017): 2125-2132

http://dx.doi.org/10.17576/jsm-2017-4611-13

 

 Connectivity Analysis of Magnetic Mineral Veins based on Multi-boreholes Image

(Analisis Kesambungan Vena Mineral Magnet berdasarkan Imej Pelbagai Lubang Gerek)

 

ZENGQIANG HAN1*, CHUANYING WANG1 & PEILIANG HU2

 

1State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

 

2Changsha Institute of Mining Research, Changsha 410012, China

 

Received: 8 February 2017/Accepted: 1 June 2017

 

ABSTRACT

There are a large number of primary structural planes of deep rock ore such as rhyolite, and bedding, which are well preserved and are often the geological interfaces of mineralization. Study on the occurrence of these structural planes is helpful to understand the extension direction of deep veins. Using borehole imaging technology as the means of acquiring information of structural plane, the magnetic angle of the borehole is obtained by using the gyroscope and the magnetic instrument and the structural plane occurrence is modified to obtain the accurate information. According to the depth effect of the deep structural plane, the concept of the feature point pair is proposed. In this paper, the mathematical description method of the structural plane in the space coordinate system is established and the information of the shape and depth of the structure plane is transformed into the 3D point coordinates in the space coordinate system. Based on the feature points, the connectivity analysis method of structural plane is established and the connectivity of the structural planes such as the interface of the vein and rhyolite is analyzed. According to the stratigraphic information in the borehole image, the extension direction of the whole field is determined. The feasibility of the method is verified by the application in a magnetite in Anhui Province, China. The results are in good agreement with the actual drilling results and the error of traditional drilling analysis is corrected. The main conclusions of this paper include: The use of gyroscopes and magnetic instrument can obtain the magnetic effect angle, to modify the structural plane information; and multi borehole structural planes connectivity analysis can provide a reference for the extension of the deep veins.

Keywords: Borehole image; connectivity analysis; magnetic effect angle; magnetic mineral vein; structural plane

ABSTRAK

Terdapat sejumlah besar struktur satah utama dalam bijih batuan dalam seperti riolit dan perlapisan yang terpelihara dan merupakan antara muka geologi untuk pemineralan. Kajian tentang kejadian struktur satah ini sangat membantu untuk memahami arah perluasan vena dalam. Menggunakan teknologi pengimejan lubang gerek sebagai cara mendapatkan maklumat struktur satah, sudut magnet lubang gerek diperoleh dengan menggunakan giroskop dan alatan magnet dan kejadian struktur satah diubah suai untuk mendapatkan maklumat yang tepat. Menurut kesan kedalaman struktur satah dalam, konsep ciri butiran pasangan dicadangkan. Dalam kertas ini, kaedah penerangan matematik struktur satah dalam sistem koordinat ruang ditubuhkan dan maklumat bentuk dan kedalaman struktur satah ditukar menjadi koordinat butiran 3D dalam sistem koordinat ruang. Berdasarkan ciri butiran ini, kaedah analisis kesambungan struktur satah ditubuhkan dan kesambungan struktur satah seperti antara muka vena dan riolit dianalisis. Menurut maklumat stratigrafi dalam imej lubang gerek, arah perluasan keseluruhan bidang ditentukan. Kebolehlaksanaan kaedah ini disahkan dengan kegunaannya dalam magnetit di Wilayah Anhui, China. Keputusan ini bersetuju dengan keputusan sebenar penggerudian dan ralat analisis penggerudian tradisi diperbetulkan. Kesimpulan utama kertas ialah penggunaan giroskop dan alatan magnet boleh mendapatkan sudut kesan magnet untuk mengubah suai maklumat struktur satah dan analisis kesambungan pelbagai lubang gerek struktur satah boleh memberikan rujukan untuk perluasan vena dalam.

Kata kunci: Analisis kesambungan; imej lubang gerek; struktur satah; sudut kesan magnet; vena mineral magnet

 

REFERENCES

Anees, M.M., Qasim, M. & Bashir, A. 2017. Physiological and physical impact of noise pollution on environment. Earth Science Pakistan 1(1): 08-11.

Baecher, G.B., Lanney, N.A. & Einstein, H.H. 1977. Statistical description of rock properties and sampling/Proceedings of the 18th US Symposium on Rock Mechanics. Golden, Colorado, USA: Colorado School of Mines Press. pp. 1-8.

Deere, D.U. 1964. Technical description of rock cores for engineering purposes. Rock Mechanics and Engineering Geology 1(1): 17-22.

Han, Z.Q., Wang, C.Y. & Zhu, H.Y. 2015. Research on deep joints and lode extension based on digital borehole camera technology. Polish Maritime Research 22(SP1): 10-14.

Han, Z.Q., Wang, C.Y. & Liu, S.B. & Zhu, H.Y. 2013. Research on connectivity of deep ore-loads of borehole based on digital borehole camera. Disaster Advances 6(8): 41-46.

Haq, M.N.U., Wazir, S.M., Ullah, T., Khan, R.A., Shah., M.S. & Khatak, A. 2016. Phytochemical and biological evaluation of defatted seeds of Jatropha curcas. Sains Malaysiana 45(10): 1435-1442.

Huang, L., Tang, H.M. & Ge, Y.F. & Zhang, L. 2012. New trial algorithm for rock discontinuity diameter application to semi-trace line-sampling. Chinese Journal of Rock Mechanics and Engineering 31(1): 140-153.

Huang, R.Q., Xu, M., Chen, J.P., Hu, X.W. & Fan, L.M. 2004. Fine Description of Complex Rock Mass Structure and Its Engineering Application. Beijing: Science Press.

Jia, H.B., Tang, H.M., Liu, Y.R. & Ma, S.Z. 2008. Theory and Engineering Application of 3D Network Analogy of Rock Mass Discontinuities. Beijing: Science Press.

International Society for Rock Mechanics (ISRM). 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 15: 319-368.

Jafar Ahamed, A. & Loganathan, K. 2017. Water quality concern in the Amaravathi River Basin of Karur district: A view at heavy metal concentration and their interrelationships using geostatistical and multivariate analysis. Geology, Ecology, and Landscapes 1(1): 19-36.

Liu, Y.Z., Sheng, J.L., Ge, X.R. & Wang, S.L. 2007. Evaluation of rock mass quality based on fractal dimension of rock mass discontinuity distribution. Rock and Soil Mechanis 28(5): 971-975.

Lu, B., Ding, X. & Wu, A.Q. 2007. Study on method of orientation data partitioning of randomly distributed discontinuities of rocks. Chinese Journal of Rock Mechanics and Engineering 26(9): 1809-1816.

Shi, Y.Q. & Dai, C.Y. 2007. Directly determining the occurrence of rock mass structural plane using drilling method. The Chinese Journal of Geological Hazard and Control 18(1): 120-123.

Song, J.J. 2009. Distribution-free method for estimating size distribution and volumetric frequency of rock joints. International Journal of Rock Mechanics and Mining Sciences 46(4): 748-760.

Wang, C.Y., Zhong, S. & Sun, W.C. 2009. Study of connectivity of discontinuities of borehole based on digital borehole images. Chinese Journal of Rock Mechanics and Engineering 28(12): 2405-2410.

Wu, F. 1993. Principles of Statistical Mechanics of Rock Masses. Wuhan: China University of Geosciences Press. pp. 30-63.

 

*Corresponding author; email: zqhan@whrsm.ac.cn

 

 

 

 

 

 

 

 

 

previous