Sains Malaysiana 46(11)(2017): 2125-2132
http://dx.doi.org/10.17576/jsm-2017-4611-13
Connectivity Analysis of Magnetic Mineral Veins
based on Multi-boreholes Image
(Analisis
Kesambungan Vena Mineral Magnet berdasarkan Imej Pelbagai Lubang
Gerek)
ZENGQIANG HAN1*, CHUANYING WANG1 & PEILIANG
HU2
1State Key Laboratory of Geomechanics
and Geotechnical Engineering, Institute of Rock and Soil Mechanics,
Chinese Academy of Sciences, Wuhan 430071, China
2Changsha Institute of Mining Research,
Changsha 410012, China
Received:
8 February 2017/Accepted: 1 June 2017
ABSTRACT
There are a large number of primary
structural planes of deep rock ore such as rhyolite, and bedding,
which are well preserved and are often the geological interfaces
of mineralization. Study on the occurrence of these structural
planes is helpful to understand the extension direction of deep
veins. Using borehole imaging technology as the means of acquiring
information of structural plane, the magnetic angle of the borehole
is obtained by using the gyroscope and the magnetic instrument
and the structural plane occurrence is modified to obtain the
accurate information. According to the depth effect of the deep
structural plane, the concept of the feature point pair is proposed.
In this paper, the mathematical description method of the structural
plane in the space coordinate system is established and the
information of the shape and depth of the structure plane is
transformed into the 3D point coordinates in the space coordinate
system. Based on the feature points, the connectivity analysis
method of structural plane is established and the connectivity
of the structural planes such as the interface of the vein and
rhyolite is analyzed. According to the stratigraphic information
in the borehole image, the extension direction of the whole
field is determined. The feasibility of the method is verified
by the application in a magnetite in Anhui Province, China.
The results are in good agreement with the actual drilling results
and the error of traditional drilling analysis is corrected.
The main conclusions of this paper include: The use of gyroscopes
and magnetic instrument can obtain the magnetic effect angle,
to modify the structural plane information; and multi borehole
structural planes connectivity analysis can provide a reference
for the extension of the deep veins.
Keywords: Borehole image; connectivity analysis; magnetic effect
angle; magnetic mineral vein; structural plane
ABSTRAK
Terdapat sejumlah besar
struktur satah utama dalam bijih batuan dalam seperti riolit
dan perlapisan yang terpelihara dan merupakan antara muka geologi
untuk pemineralan. Kajian tentang kejadian struktur satah ini
sangat membantu untuk memahami arah perluasan vena dalam. Menggunakan
teknologi pengimejan lubang gerek sebagai cara mendapatkan maklumat
struktur satah, sudut magnet lubang gerek diperoleh dengan menggunakan
giroskop dan alatan magnet dan kejadian struktur satah diubah
suai untuk mendapatkan maklumat yang tepat. Menurut kesan kedalaman
struktur satah dalam, konsep ciri butiran pasangan dicadangkan.
Dalam kertas ini, kaedah penerangan matematik struktur satah
dalam sistem koordinat ruang ditubuhkan dan maklumat bentuk
dan kedalaman struktur satah ditukar menjadi koordinat butiran
3D dalam sistem koordinat ruang. Berdasarkan ciri butiran ini,
kaedah analisis kesambungan struktur satah ditubuhkan dan kesambungan
struktur satah seperti antara muka vena dan riolit dianalisis.
Menurut maklumat stratigrafi dalam imej lubang gerek, arah perluasan
keseluruhan bidang ditentukan. Kebolehlaksanaan kaedah ini disahkan
dengan kegunaannya dalam magnetit di Wilayah Anhui, China. Keputusan
ini bersetuju dengan keputusan sebenar penggerudian dan ralat
analisis penggerudian tradisi diperbetulkan. Kesimpulan utama
kertas ialah penggunaan giroskop dan alatan magnet boleh mendapatkan
sudut kesan magnet untuk mengubah suai maklumat struktur satah
dan analisis kesambungan pelbagai lubang gerek struktur satah
boleh memberikan rujukan untuk perluasan vena dalam.
Kata kunci: Analisis kesambungan; imej
lubang gerek; struktur satah; sudut kesan magnet; vena mineral
magnet
REFERENCES
Anees, M.M., Qasim,
M. & Bashir, A. 2017. Physiological and physical impact
of noise pollution on environment. Earth Science Pakistan
1(1): 08-11.
Baecher, G.B., Lanney,
N.A. & Einstein, H.H. 1977. Statistical description of rock
properties and sampling/Proceedings of the 18th US Symposium
on Rock Mechanics. Golden, Colorado, USA: Colorado School
of Mines Press. pp. 1-8.
Deere, D.U. 1964. Technical
description of rock cores for engineering purposes. Rock
Mechanics and Engineering Geology 1(1): 17-22.
Han, Z.Q., Wang, C.Y.
& Zhu, H.Y. 2015. Research on deep joints and lode extension
based on digital borehole camera technology. Polish Maritime
Research 22(SP1): 10-14.
Han, Z.Q., Wang, C.Y.
& Liu, S.B. & Zhu, H.Y. 2013. Research on connectivity
of deep ore-loads of borehole based on digital borehole camera.
Disaster Advances 6(8): 41-46.
Haq, M.N.U., Wazir,
S.M., Ullah, T., Khan, R.A., Shah., M.S. & Khatak, A. 2016.
Phytochemical and biological evaluation of defatted seeds of
Jatropha curcas. Sains Malaysiana 45(10): 1435-1442.
Huang, L., Tang, H.M.
& Ge, Y.F. & Zhang, L. 2012. New trial algorithm for
rock discontinuity diameter application to semi-trace line-sampling.
Chinese Journal of Rock Mechanics and Engineering 31(1):
140-153.
Huang, R.Q., Xu, M.,
Chen, J.P., Hu, X.W. & Fan, L.M. 2004. Fine Description
of Complex Rock Mass Structure and Its Engineering Application.
Beijing: Science Press.
Jia, H.B., Tang, H.M.,
Liu, Y.R. & Ma, S.Z. 2008. Theory and Engineering Application
of 3D Network Analogy of Rock Mass Discontinuities. Beijing:
Science Press.
International Society
for Rock Mechanics (ISRM). 1978. Suggested methods for the quantitative
description of discontinuities in rock masses. International
Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts 15: 319-368.
Jafar Ahamed, A. &
Loganathan, K. 2017. Water quality concern in the Amaravathi
River Basin of Karur district: A view at heavy metal concentration
and their interrelationships using geostatistical and multivariate
analysis. Geology, Ecology, and Landscapes 1(1): 19-36.
Liu, Y.Z., Sheng, J.L.,
Ge, X.R. & Wang, S.L. 2007. Evaluation of rock mass quality
based on fractal dimension of rock mass discontinuity distribution.
Rock and Soil Mechanis 28(5): 971-975.
Lu, B., Ding, X. & Wu, A.Q. 2007. Study on method of orientation
data partitioning of randomly distributed discontinuities of
rocks. Chinese Journal of Rock Mechanics and Engineering
26(9): 1809-1816.
Shi, Y.Q. & Dai, C.Y. 2007.
Directly determining the occurrence of rock mass structural
plane using drilling method. The Chinese Journal of Geological
Hazard and Control 18(1): 120-123.
Song, J.J. 2009. Distribution-free
method for estimating size distribution and volumetric frequency
of rock joints. International Journal of Rock Mechanics and
Mining Sciences 46(4): 748-760.
Wang, C.Y., Zhong, S. & Sun,
W.C. 2009. Study of connectivity of discontinuities of borehole
based on digital borehole images. Chinese Journal of Rock
Mechanics and Engineering 28(12): 2405-2410.
Wu, F. 1993. Principles of Statistical
Mechanics of Rock Masses. Wuhan: China University of Geosciences
Press. pp. 30-63.
*Corresponding author;
email: zqhan@whrsm.ac.cn