Sains Malaysiana 46(11)(2017): 2119-2124
http://dx.doi.org/10.17576/jsm-2017-4611-12
Steep Slope DEM Model
Construction based on the Unmanned Aerial Vehicle (UAV) Images
(Pembinaan Model DEM Cerun Curam berdasarkan Imej
Kenderaan Udara Awasan Automatik (UAV)
WENFEI XI1* & DONGSHENG LI2
1College of Tourism and Geographic
Sciences, Yunnan Normal University, Kunming 650050
China
2Kunming Metallurgy College, Kunming
650033, China
Received: 27 January
2017/Accepted: 18 May 2017
ABSTRACT
The DEM construction of high and steep slope has great importance
to slope disaster monitoring. The conventional method used to
construct high and steep slope DEM model requires larger field
surveying workload. First of all, the high and steep slope image
was obtained through unmanned aerial vehicle (UAV) platform;
Then the SIFT algorithm is used to extract the feature points
which are going to be matched accurately by using RANSAC algorithm.
Finally, stereo pair splicing method is used to generate orthogonal
images and construct DEM model. After comparing the DEM model
with actual slope measurement result collected by total station
finding, it is shown that elevation error between the DEM model
constructed by unmanned aerial vehicle (UAV) and actual measurement
is minimal and its efficiency is proven.
Keywords: DEM model; high and steep slope; orthogonal
image; SIFT algorithm; unmanned aerial vehicle (UAV)
ABSTRAK
Pembinaan DEM di cerun tinggi dan
curam adalah
penting kepada pemantauan bencana cerun. Kaedah konvensional yang digunakan
untuk membina
model DEM cerun tinggi dan
curam memerlukan
beban kerja pengukuran
lapangan lebih
besar. Pertama, imej cerun yang tinggi dan curam
diambil melalui
platform kenderaan udara awasan automatik (UAV); kemudian, algoritma SIFT digunakan untuk mendapatkan ciri butiran yang akan dipadankan
dengan tepat
menggunakan algoritma RANSAC. Akhir sekali, kaedah
penyambatan pasangan
stereo digunakan untuk
menjana imej ortogonal
dan membina
model DEM. Selepas membandingkan keputusan model DEM dengan pengukuran cerun sebenar yang dikumpul melalui jumlah stesen, ditunjukkan bahawa ralat penaikan antara
model DEM yang dibina oleh
kenderaan udara awasan automatik (UAV) dan pengukuran sebenar adalah minimum dan kecekapannya telah dibuktikan.
Kata kunci: Algoritma SIFT; cerun tinggi dan curam;
kenderaan udara awasan
automatik (UAV); imej ortogon; model DEM
REFERENCES
Abd Rahman, N.H., Lee, M.H., Suhartono & Latif, M.T. 2016. Evaluation
performance of time series approach for forecasting air pollution
index in Johor, Malaysia. Sains
Malaysiana 45(11): 1625-1633.
Bay,
H., Ess, A., Tuytelaars,
T. & Van Gool, L. 2008. Speeded-up robust features
(SURF). Computer Vision and Image Understanding 110(3):
346-359.
Berni, J., Zarco-Tejada, P., Suárez, L., González-Dugo,
V. & Fereres, E. 2009. Remote
sensing of vegetation from UAV platforms using lightweight multispectral
and thermal imaging sensors. Proc. ISPRS 38: 22-29.
Chai,
Z.W., Kang, J., Wang, L., Zhao, X. & Qiao,
H.L. 2015. The construction of DEM in mountain plantation
landscape based on UAV images. Remote Sensing Technology
and Application 30(3): 504-508.
Colomina, I. & Molina, P.
2014. Unmanned aerial systems for photogrammetry and remote
sensing: A review. ISPRS J. Photogramm.
Remote Sens. 92: 79-97.
Eisenbeiss, H. & Sauerbier, M. 2011. Investigation of UAV
systems and flight modes for photogrammetric applications.
Photogramm. Rec. 26: 400-421.
Fernández-Hernandez, J., González-Aguilera,
D., Rodríguez-Gonzálvez, P. &
Mancera-Taboada, J. 2015. Image-based modelling
from unmanned aerial vehicle (UAV) photogrammetry: An effective,
low-cost tool for archaeological applications. Archaeometry
57: 128-145.
Forstner, W. & Gulch, E.
1987. A fast operator for detection and precise location
of distinct points, comers and centres
of circular features. Interlaken: Switzerland Proceeding
of Intercommission Workshop on Fast Processing of Photogrammetric
Data. pp. 281-305.
Gao, W. & Guo, Y. 2016. The fifth geometric arithmetic
index of bridge graph and carbon nanocones.
Journal of Difference Equations and Applications.
http://dx.doi.org/10.1080/10236198.2016.1197214.
Gao, W., Guo, Y. & Wang, K.Y. 2016. Ontology
algorithm using singular value decomposition and applied in
multidisciplinary, cluster computing. The Journal
of Networks Software Tools and Applications 19(4): 2201-2210.
Gao, W. & Wang, W.F. 2016. The eccentric connectivity
polynomial of two classes of nanotubes. Chaos, Solitons
and Fractals 89: 290-294.
Gerke, M. & Przybilla, H.J. 2016. Accuracy analysis of photogrammetric UAV image blocks:
Influence of onboard RTK-GNSS and cross flight patterns. Photogramm. Fernerkund. Geoinf. 14: 17-30.
Harris, C. &
Stephens, M. 1988.
A combined corner and edge detector.
Alvey Vision Conference 15: 147-151. doi: 10.5244/C.2.23.
Harwin, S. & Lucieer, A. 2012. Assessing the accuracy of georeferenced point clouds
produced via multi-view stereopsis from unmanned aerial vehicle
(UAV) imagery. Remote Sens. 4: 1573-1599.
Li, B.L. 2008. Study
of registration algorithm in image mosaic based on key points.
Master Thesis of Tianjin University (Unpublished).
Lowe, D.G. 1999. Object recognition
from local scale-invariant features. The Proceedings of the
Seventh IEEE International Conference on Computer Vision 2:
1150-1157.
Nex, F. & Remondino,
F. 2014. UAV for 3D mapping applications: A review. Appl.
Geomat. 6: 1-15.
Puri, A., Valavanis, K. & Kontitsis, M.
2007.
Statistical profile generation for traffic monitoring using
real-time UAV based video data. In Proceedings
of the Mediterranean Conference on Control & Automation,
Athens, Greece. pp. 27-29.
Roslee, R., Simon, N.,
Tongku, F., Norhisham,
M.N. & Taharin, M.R. 2017. Landslide susceptibility
analysis (LSA) using deterministic model (infinite slope) (DESSISM)
in the Kota Kinabalu area, Sabah,
Malaysia. Geological Behavior 1(1): 06-09.
Zhang, C. &
Kovacs, J.M. 2012.
The application of small unmanned aerial systems for precision
agriculture: A review. Precis.
Agric. 13: 693-712.
Zhang, W.Q., Zhao,
J.S. & Tang, M. 2014.
Research on 3d terrain modeling by UAV image.
Engineering of Surveying and Mapping 3(23): 36-41.
Zhao, S. &
Chen, T. 2017.
Design and development of national geographic condition monitoring
system based on Web GIS. Geology, Ecology, and Landscapes
1(1): 12-18.
*Corresponding author; email: xiwenfei911@163.com