Sains
Malaysiana 46(11)(2017): 2187-2193
http://dx.doi.org/10.17576/jsm-2017-4611-20
Laboratory Study of
Acoustic Velocity in Different Types of Rocks at Seismic Frequency
Band
(Kajian Makmal
Halaju Akustik dalam Pelbagai Jenis Batuan pada Jalur Frekuensi
Seismos)
YUNLAN HE1,2*,SUPING
PENG2,
WENFENG DU2,
XIAOMING TANG2
& ZENG HU2
1State
Key Laboratory of Water Resource Protection and Utilization
in Coal Mining, Beijing 100011, China
2State
Key Laboratory of Coal Resources and Safety Mining, China University
of Mining & Technology (Beijing), Beijing
100083, China
Received:
22 January 2017/Accepted: 30 May 2017
ABSTRACT
In order to understand the characteristics of acoustic wave propagation
in rocks within seismic frequency band (<100 Hz), the velocities
of longitudinal and transverse waves of four different types
of rocks were tested using low-frequency stress-strain method
by means of the physical testing system of rock at low frequency
and the experimental data of acoustic velocities of four different
types of rocks at this frequency band were obtained. The experimental
results showed that the acoustic velocities of four different
types of rocks increased with the increase of temperature and
pressure within the temperature and pressure ranges set by the
experiment. The acoustic velocity of fine sandstone at 50% water
saturation was smaller than that of dry sample. The acoustic
velocities of four different types of rocks were different and
the velocities of longitudinal waves of gritstone, fine sandstone,
argillaceous siltstone and mudstone increased in turn under
similar conditions and were smaller than those at ultrasonic
frequency. Few of existing studies focus on the acoustic velocity
at seismic frequency band, thus, further understanding of the
acoustic characteristics at this seismic frequency band still
requires more experimental data.
Keywords: Acoustic velocity; pressure; seismic frequency band; temperature
ABSTRAK
Untuk memahami ciri penyebaran gelombang akustik dalam jalur frekuensi
seismos (< 100 Hz) batuan, halaju gelombang membujur dan
melintang empat jenis batuan berbeza telah diuji menggunakan
kaedah frekuensi rendah strain-tegasan melalui sistem ujian
fizikal batuan pada frekuensi rendah dan data uji kaji halaju
akustik daripada empat jenis batuan pada jalur frekuensi ini
diperoleh. Keputusan uji kaji menunjukkan bahawa halaju akustik
daripada empat jenis batuan meningkat dengan peningkatan suhu
dan tekanan dalam julat suhu dan tekanan yang ditetapkan oleh
uji kaji ini. Halaju akustik batu pasir halus pada 50% air tepu
adalah lebih kecil berbanding dengan sampel kering. Halaju akustik
daripada empat jenis batuan berbeza dan halaju daripada gelombang
membujur batu grit, batu pasir halus, batu lodak argil dan batu
lumpur meningkat pada keadaan yang serupa tetapi lebih kecil
berbanding dengan kekerapan ultrasonik. Beberapa kajian sedia
ada memberi tumpuan kepada kelajuan akustik pada jalur frekuensi
seismos, oleh itu, pemahaman lanjut terhadap ciri akustik pada
jalur frekuensi seismos ini masih memerlukan lebih data uji
kaji.
Kata kunci: Halaju akustik; jalur
frekuensi seismos; suhu; tekanan
REFERENCES
Ba, J. 2010. Wave propagation theory
in double-porosity medium and experimental analysis on seismic
responses. Scientia Sinica (Physica, Mechanica & Astronomica)
40(11): 1398-1409.
Batzle, M.L., Han, D.H. & Hofmann,
R. 2006. Fluid mobility and frequency-dependent seismic velocity-direct
measurements. Geophysics 71(1): N1-N9.
Biot, M.A. 1956. Theory of propagation
of elastic waves in a fluid-saturated porous solid. I. Low-frequency
range. The Journal of the Acoustical Society of America 28(2):
168-178.
Jiang, L., Yue, K., Yang, Y. &
Wu, Q. 2016. Leaching and freeze-thaw events contribute to litter
decomposition - A review. Sains Malaysiana 45(7): 1041-1047.
Mavko, G., Mukerji, T. & Dvorkin,
J. 2012. The Rock Physics Handbook, 2nd ed. Cambridge:
Cambridge University Press. pp. 310-311.
Mavko, G., Mukerji, T. & Dvorkin,
J. 1998. The Rock Physics Handbook: Tools for Seismic Analysis
in Porous Media. Cambridge: Cambridge University Press.
pp. 102-112.
Müller, M.T., Gurevich, B. &
Lebedev, M. 2010. Seismic wave attenuation and dispersion resulting
from wave-induced flow in porous rocks - A review. Geophysics
75(5): A147-A164.
Murphy III, W.F. 1984. Acoustic
measures of partical gas saturation in tight sandstones. Journal
of Geophysical Research 89(B13): 11549-11559
Sultana, M.N., Akib, S. & Ashraf,
M.A. 2017. Thermal comfort and runoff water quality performance
on green roofs in tropical conditions. Geology, Ecology,
and Landscapes 1(1): 47-55.
Tutuncu, A.N., Gregory, A.R., Sharma,
M.M. & Podio, A.L. 1998. Nonlinear viscoelastic behavior
of sedimentary rocks, Part 1: Effect of frequency and strain
amplitude. Geophysics 63(1): 184-194.
Wang, S.X., Zhao, J.G., Harris,
J.M. & Quan, Y. 2012. Differential acoustic resonance spectroscopy
for the acoustic measurement of small and irregular samples
in the low frequency range. Journal of Geophysical Research
Atmospheres 117(B6): doi.10.1029/2011JB00880.
Wei, X., Wang, S.X., Zhao, J.G.
& Deng, J.X. 2015a. Laboratory investigation of influence
factors on Vp and Vs in tigth sandstone. Geophysical Prospecting
for Petroleum 54(1): 9-16.
Wei, X., Wang, S.X., Zhao, J.G.,
Tang, G.Y. & Deng, J.X. 2015b. Laboratory study of velocity
of the seismic wave in fluid-saturated sandstones. Chinese
J. Geophys. 58(9): 330-338.
White, J.E. 1975. Computed seismic
speeds and attenuation in rocks with partial gas saturation.
Geophysics 40(2): 224-232.
Wu, H., Zhao, B. & Gao, W. 2017.
Analysis of gradient descent ontology iterative algorithm for
geological setting. Geology, Ecology, and Landscapes 1(1):
41-46.
*Corresponding author;
email: 151023631@qq.com