Sains Malaysiana 46(12)(2017): 2507–2514
http://dx.doi.org/10.17576/jsm-2017-4612-28
Enhanced
Photodegradation of Phenol by ZnO
Nanoparticles Synthesized through Sol-gel Method
(Peningkatan Fotopenguraian oleh Fenol dengan
Sintesis ZnO
Nano Zarah melalui Kaedah
Sol-gel)
NIKATHIRAH YUSOFF1,
LI-NGEE
HO2*,
SOON-AN
ONG1,
YEE-SHIAN
WONG1,
WANFADHILAH
KHALIK1
& MUHAMMAD FAHMI RIDZWAN1
1Water Research Goup (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia
2School of Materials Engineering,
Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan
Malaysia
Received: 13 April 2015/Accepted:
1 May 2017
ABSTRACT
Zinc oxide (ZnO) utilization in advanced oxidation process (AOP)
via solar-photocatalytic process was a promising method for
alternative treating wastewater containing phenol. The ZnO
photocatalyst semiconductor was synthesized by sol-gel method.
The morphology of the ZnO nanostructures
was observed by using scanning electron microscope (SEM) and
the crystallite phase of the ZnO was
confirmed by x-ray diffraction (XRD).
The objective of this study was to synthesis ZnO
nanoparticles through a sol-gel method for application as a
photocatalyst in the photodegradation
of phenol under solar light irradiation. The photodegradation
rate of phenol increased with the increasing of ZnO
loading from 0.2 until 1.0 g. Only 2 h were required for synthesized
ZnO to fully degrade the phenol. The
synthesized ZnO are capable to totally
degrade high initial concentration up until 45 mg L-1 within
6 h of reaction time. The photodegradation
of phenol by ZnO are most favoured
under the acidic condition (pH3) where the 100% removal achieved
after 2 h of reaction. The mineralization of phenol was monitored
through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study
distinctly utilized natural sunlight as the sole sources of
irradiation which safe, inexpensive; to initiate the photocatalyst
for degradation of phenol.
Keywords: Phenol; photocatalyst; photocatalytic; sol-gel; zinc oxide
ABSTRAK
Penggunaan zink oksida (ZnO)
dalam proses pengudaraan
lanjutan (PPL) melalui
proses sinaran suria
fotopemangkin merupakan kaedah alternatif untuk merawat air buangan yang mengandungi fenol. Pemangkin semikonduktor ZnO
disintesis melalui
kaedah sol-gel. Bentuk permukaan
struktur nano
ZnO dikenal pasti
menggunakan analisis
SEM
dan fasa hablur
ZnO disahkan
melalui analisis XRD.
Objektif kajian
ini adalah untuk
mensintesis ZnO
berstruktur nano melalui kaedah sol-gel bertujuan untuk diaplikasikan sebagai pemangkin dalam proses fotopenguraian fenol di bawah sinaran suria.
Kadar fotopenguraian fenol
meningkat dengan peningkatan jumlah ZnO bermula daripada
0.2 hingga 1.0 g. Tempoh
masa 2 jam diperlukan untuk
ZnO sintesis mengurai
fenol sepenuhnya.
ZnO sintesis mampu
untuk menguraikan
kepekatan fenol yang tinggi sehingga 45 mg L-1 dalam tempoh 6 jam masa tindak balas. Fotopenguraian
fenol oleh
ZnO sangat sesuai
dalam keadaan
berasid (pH3), dengan 100% penguraian dicatatkan selepas dua jam masa tindak balas. Penguraian lengkap
fenol dikawal
menerusi pengurangan keperluan oksigen lengkap (COD) dan
sebanyak 92.6% penguraian
dicapai. Kajian ini jelas menggunakan sinaran matahari semula jadi sebagai sumber
sinaran tunggal
yang selamat, murah dan mampu mengaktifkan
pemangkin untuk
penguraian fenol.
Kata kunci: Fenol;
fotopemangkin; fotopemangkinan;
sol-gel; zink oksida
REFERENCES
Agency
for Toxic Substances and Disease Registry (ATSDR). 2008. Toxicology
Profile for Phenol. Atlanta, GA: U.S. Department of Health
and Human Services, Public Health Service.
Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R. & Hashib, M.A. 2010. Heterogeneous photocatalytic degradation
of phenols in wastewater: A review on current status and developments.
Desalination 261: 3-18.
Alnaizy,
R. & Akgerman, A. 2000. Advanced oxidation of phenolic compounds. Advances in Environmental
Research 4: 233-244.
Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad,
A.B., Takriff, M.S. & Sopian K. 2010. Solar photocatalytic degradation of environmental
pollutants using ZnO prepared by sol-gel:
2, 4-Dichlorophenol as case study. The International Journal
of Thermal & Environmental Engineering 1: 37-42.
Bahadur,
N.M., Furusawa, T., Sato, M., Kurayama,
F. & Suzuki, N. 2010. Rapid synthesis, characterization and
optical properties of TiO2 coated ZnO
nanocomposite particles by a novel microwave irradiation method.
Materials Research Bulletin 45: 1383-1388.
Behera,
N.K. 2009.
Treatment of industrial effluents in a bioreactor.
Dissertation, National Institute of Technology, Rourkela (Unpublished).
Benhebal,
H., Chaib, M., Salmon, T., Geens,
J., Leonard, A., Lambert, SD, Crine,
M. & Heinrich, B. 2013.
Photocatalytic degradation of phenol and benzoic
acid using zinc oxide powders prepared by the sol–gel process.
Alexandria Engineering Journal 52: 517-523.
Bhattacharjee,
C.R., Purkayastha, D.D., Bhattacharjee,
S. & Nath, A. 2011. Homogeneous chemical precipitation route to ZnO
nanosphericals. Assam University
Journal of Science and Technology 7: 122-127.
Burton,
A.W., Ong, K., Rea, T. & Chan, I.Y. 2009. On the estimation
of average crystallite size of zeolites from the Scherrer
equation: A critical evaluation of its application to zeolites
with one-dimensional pore systems. Microporous and Mesoporous
Materials 117: 75-90.
Chen,
D. & Jay, A.K. 1999. Photocatalytic kinetics of phenol and its derivatives
over UV irradiated TiO2. Applied
Catalysis B: Environmental 23: 143-157.
Chowdhury,
P. & Viraraghavan, T. 2009. Sonochemical degradation
of chlorinated organic compounds, phenolic compounds and organic
dyes- A review. Science of the Total Environment 407:
2472-2492.
Hayat, K., Gondal, M.A., Khaled, M.M., Ahmed, S. & Shemsi, A.M. 2011. Nano ZnO synthesis by modified sol gel method and its application
in heterogeneous photocatalytic removal of phenol from water.
Applied Catalysis A: General 393: 122-129
Hsu, C.C. &
Wu, N.L. 2005.
Synthesis and photocatalytic activity of ZnO/ZnO2
composite. Journal of Photochemistry and Photobiology
A: Chemistry 172: 269-274.
Jang, Y.J., Simer, C. & Ohm, T. 2005. Comparison of
zinc oxide nanoparticles and its nano-crystalline
particles on the photocatalytic degradation of methylene blue.
Materials Research Bulletin 41: 67-77.
Karunakaran, C. & Dhanalakshmi, R. 2008. Semiconductor-catalyzed degradation
of phenols with sunlight. Solar Energy Materials and
Solar Cells 92: 1315-1321.
Lanje, A.S., Sharma,
S.J., Ningthoujam, R.S., Ahn,
J.S. & Pode, R.B. 2013. Low temperature dielectric studies
of zinc oxide (ZnO) nanoparticles
prepared by precipitation method. Advanced
Powder Technology 24(1): 331-335.
Lathasree, S., Rao, A.N.,
SivaSankar, B., Sadasivam,
V. & Rengaraj, K. 2004. Heterogeneous
photocatalytic mineralisation of phenols
in aqueous solutions. Journal of Molecular Catalysis
A: Chemical 223: 101-105.
Li, D., Haneda,
H., Ohashi, N., Saito, N. & Hishita,
S. 2005. Morphological reform of ZnO
particles induced by coupling with MOx
(M=V,W,Ce) and the effects on photocatalytic activity. Thin
Solid Films 486: 20-23.
Pardeshi, S.K. & Patil, A.B. 2008. A simple route for photocatalytic
degradation of phenol in aqueous zinc oxide suspension using
solar energy. Solar Energy 82: 700-705.
Parida, K.M., Dash,
S.S. & Das, D.P. 2006.
Physico-chemical
characterization and photocatalytic activity of zinc oxide prepared
by various methods. Journal of Colloid and Interface
Science 298: 787-793.
Panwar, R.S. 2009. Preparation
of modified ZnO nanoparticles by sol-gel
process and their characterization. Dissertation.
Thapar University, Patiala (Unpublished).
Pudukudy, M. & Yaakob, Z. 2013. Hydrothermal synthesis of mesostructured
ZnO micropyrmids
with enhanced photocatalytic performance. Superlattices
and Microstructures 63: 47-57.
Raoufi, D. 2013. Synthesis
and microstructural properties of ZnO
nanoparticles prepared by precipitation method. Renewable
Energy 50: 932-937.
Rezapour, M. & Talebian, N. 2011. Comparison of structural, optical properties and photocatalytic
activity of ZnO with different morphologies:
Effect of synthesis methods and reaction media. Materials
Chemistry and Physics 129: 249-255.
Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo,
B., Palanichamy, M. & Murugesan,
V. 2003.
Solar photocatalytic degradation of azo dye: Comparison of photocatalytic
efficiency of ZnO and TiO2.
Solar Energy Materials and Solar Cells 77: 65-82.
Sobczyńsk, A., Duczmal, Ł. & Zmudziński,
W. 2004.
Phenol destruction by photocatalysis
on TiO2: An attempt to solve the reaction mechanism.
Journal of Molecular Catalysis A: Chemical 213: 225-230.
Tsay, C.Y., Fan, K.S.,
Chen, S.H. & Tsai, C.H. 2010. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method.
Journal of Alloys and Compounds 495: 126-130.
Valtierra, J.M., Moctezuma,
E., Manuel, S.C. & Claudio, F.R. 2005. Global photonic
efficiency for phenol degradation and mineralization in heterogeneous
photocatalysis. Journal of Photochemistry and Photobiology
A: Chemistry 174: 246-252.
Wang, H., Xie,
C., Zhang, W., Cai,
S., Yang, Z. & Gui, Y. 2007. Comparison
of dye degradation efficiency using ZnO
powders with various size scales. Journal of Hazardous Materials
141: 645-652.
Yusoff, N., Ong,
S.A., Ho, L.N., Wong, Y.S. & Khalik,
W. 2014.
Degradation of phenol through solar-photocatalytic treatment by zinc
oxide in aqueous solution. Desalination and Water
Treatment 54(6): 1621-1628.
Zaki, M.I., Nohman, A.K.H., Nashed, S. &
Fahim, R.B. 1987. Assessment of textural consequences of compacting
calcined chromia gel by nitrogen sorption
isotherms. Colloids and Surfaces 23: 1-14.
Zulfakar, M., Hairul, N.A.H., Akmal, H.M.R. &
Rahman, M.A. 2011.
Photocatalytic degradation of phenol in a fluidized bed reactor
utilizing immobilized TiO2 photocatalyst:
Characterization and process studies. Journal of Applied
Sciences 11: 2320-2326.
*Corresponding author;
email: lnho@unimap.edu.my