Sains Malaysiana 46(12)(2017): 2515–2521

http://dx.doi.org/10.17576/jsm-2017-4612-29

 

Solvothermal Synthesis of Anatase TiO2 Nanosheets with Exposed {001} Facets

(Sintesis Solvoterma Anatase Helaian Nano TiO2 dengan Faset {001} Terdedah)

 

MADIHA YASIR1., M. TAZLI AZIZAN1,3*, ANITA RAMLI2,3 & MARIAM AMEEN1

 

1Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak Darul Ridzuan, Malaysia

 

2Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS

32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

3Center for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 31750 Tronoh, Perak Darul Ridzuan, Malaysia

 

Received: 18 December 2015/Accepted: 5 September 2016

 

ABSTRACT

Enhancing the catalytic activity of titania (TiO2) nanomaterials by controlling the size, surface area and percentage of highly reactive exposed {001} facets has become attractive in the recent years because of its wider applications in the different fields of scientific research. In the present study, anatase TiO2 nano-sized sheets (TNS) were synthesized using a simple ethanol assisted solvothermal chemical route. The TNS structures were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron microscopic (TEM), Raman analysis, X-ray diffraction (XRD) and Accelerated surface area and porosimetry (ASAP) analysis. The results from TEM, Raman and XRD analysis confirmed the presence of anatase crystalline structure of TNS with the size range of 20-40 nm. The synthesized TNS structures possess 60% of highly reactive exposed {001} facets with a total surface area of 73 m²/g. These tremendous crystalline properties of solvothermally synthesized TNS structure makes it as an attractive catalyst for environmental and bio-fuel applications.

 

Keywords: Anatase TiO2; nanosheets; solvothermal; {001} Facets

 

ABSTRAK

Peningkatan aktiviti perangsang menggunakan bahan nano titania (TiO2) dengan mengawal saiz, permukaan dan peratusan faset {001} terdedah sangat reaktif telah menjadi tarikan dalam beberapa tahun kebelakangan kerana penggunaan yang lebih meluas dalam perbezaan bidang penyelidikan saintifik. Dalam kajian ini, helaian bersaiz nano anatase TiO2 (TNS) telah disintesis menggunakan laluan etanol mudah berbantu kimia solvoterma. Struktur TNS telah dicirikan menggunakan pancaran medan imbasan elektron mikroscopi (FE-SEM), elektron penghantaran mikroskopik (TEM), analisis Raman, pembelauan sinar-x (XRD) dan kawasan permukaan pecutan serta analisis porosimetri (ASAP). Keputusan daripada analisis TEM, Raman dan XRD mengesahkan kewujudan struktur hablur anatase TNS dengan pelbagai julat saiz 20-40 nm. Struktur sintesis TNS memiliki 60% daripada faset {001} terdedah sangat reaktif dengan jumlah keluasan permukaan 73 m²/g. Sifat kristal solvoterma yang hebat daripada struktur TNS yang disintesis menjadikannya sebagai pemangkin menarik untuk alam sekitar dan aplikasi bio-bahan api.

 

Kata kunci: Anatase TiO2; faset {001}; helaian nano; solvoterma

REFERENCES

An’Amt, M.N., Huang, N.M., Radiman, S., Lim, H.N. & Muhamad, M.R. 2014. Triethanolamine-solution for rapid hydrothermal synthesis of titanate nanotubes. Sains Malaysiana 43(1): 137-144.

An, T., Chen, J., Nie, X., Li, G., Zhang, H., Liu, X. & Zhao, H. 2012. Synthesis of carbon nanotube-anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene. ACS Applied Materials & Interfaces 4(11): 5988-5996.

Biyoghe Bi Ndong, L., Ibondou, M.P., Gu, X., Lu, S., Qiu, Z., Sui, Q. & Mbadinga, S.M. 2014. Enhanced photocatalytic activity of TiO2 nanosheets by doping with cu for chlorinated solvent pollutants degradation. Industrial and Engineering Chemistry Research 53(4): 1368-1376.

Cai, J., Huang, Z., Lv, K., Sun, J. & Deng, K. 2014. Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity. RSC Advances 4(38): 19588-19593.

Cao, X., Tian, G., Chen, Y., Zhou, J., Zhou, W., Tian, C. & Fu, H. 2014. Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. Journal of Materials Chemistry A 2(12): 4366-4374.

Chang, J.B., Liu, C.H., Liu, J., Zhou, Y.Y., Gao, X. & Wang, S.D. 2015. Green-chemistry compatible approach to TiO2- supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano- Micro Letters 7(3): 307-315.

Chao, C., Ren, Z., Yin, S., Xu, G., Gong, S., Yang, X., Li, X., Shen, G. & Han, G. 2014. Dissolution/recrystallization growth of titanate nanostructures by amorphous precursor. Advanced Powder Technology 25(2): 745-751.

Chen, C., Hu, X., Wang, Z., Xiong, X., Hu, P., Liu, Y. & Huang, Y. 2014. Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon 69: 302-310.

Chu, M., Tang, Y., Rong, N., Cui, X., Liu, F., Li, Y., Zhang, C., Xiao, P. & Zhang, Y. 2016. Hydrothermal synthesis, and tailoring the growth of Ti-supported TiO2 nanotubes with thick tube walls. Materials & Design 97: 257-267.

Dai, H., Zhou, Y., Chen, L., Guo, B., Li, A., Liu, J., Yu, T. & Zou, Z. 2013. Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells. Nanoscale 5(11): 5102-5108.

Deng, L.J., Gu, Y.Z., Xu, W.X. & Ma, Z.Y. 2014. Preparation of TiO2 nanocrystals/graphene composite and its photocatalytic performance. Chinese Journal of Chemical Physics 27(3): 321-326.

Diebold, U. 2003. The surface science of titanium dioxide. Surface Science Reports 48(5-8): 53-229.

Dozzi, M.V. & Selli, E. 2013. Specific facets-dominated anatase TiO2: Fluorine-mediated synthesis and photoactivity. Catalysts 3(2): 455-485.

Gu, L., Wang, J., Cheng, H., Du, Y. & Han, X. 2012. Synthesis of nano-sized anatase TiO2 with reactive {001} facets using lamellar protonated titanate as precursor. Chemical Communications 48(55): 6978-6980.

Liu, S., Yu, J. & Jaroniec, M. 2011. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chemistry of Materials 23(18): 4085-4093.

Lu, H., Wang, Y., Wang, Y., Liang, W. & Yao, J. 2015. Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment. RSC Advances 5(109): 89777-89782.

Madiha Yasir, S.C., Nurlidia Mansor, Norani Muti Mohamed & Yoshimitsu Uemura. 2014. Upgrading of pyrolysis bio-oil to fuel over supported nanomaterials - A review. Applied Mechanics and Materials 625: 357-360.

Madsen, A.T., Ahmed, E.H., Christensen, C.H., Fehrmann, R. & Riisager, A. 2011. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst. Fuel 90(11): 3433-3438.

Noor, A.M., Ming, H., Ngee, L., Radiman, S., Rahim, S., Ahmad, S.I., Shamsudin, S.A., Yarmo, M.A. & Sajab, M.S. 2013. Synthesis and morphology control of TiO2 nano structures via hydrothermal method for applications as electrodes in dye-sensitized solar cells. Sains Malaysiana 42(7): 967-974.

Ou, H.H. & Lo, S.L. 2007. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology 58(1): 179-191.

Reddy, K.M., Manorama, S.V. & Reddy, A.R. 2003. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics 78(1): 239-245.

Ruso, J.M., Verdinelli, V., Hassan, N., Pieroni, O. & Messina, P.V. 2013. Enhancing CaP biomimetic growth on TiO2 cuboids nanoparticles via highly reactive facets. Langmuir 29(7): 2350-2358.

Shi, Q., Li, Y., Zhan, E., Ta, N. & Shen, W. 2014. Anatase TiO2 hollow nanosheets: Dual roles of F-, formation mechanism, and thermal stability. CrystEngComm 16(16): 3431-3437.

Tian, F., Zhang, Y., Zhang, J. & Pan, C. 2012. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. The Journal of Physical Chemistry C 116(13): 7515-7519.

Tsai, C.C. & Teng, H. 2006. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials 18(2): 367-373.

Vaenas, N., Stergiopoulos, T. & Falaras, P. 2015. Titania nanotubes for solar cell applications. In Electrochemically Engineered Nanoporous Materials: Methods, Properties & Application, edited by Losic, D. & Santos, A. New York: Springer pp. 289-306.

Vu, T.H.T., Au, H.T., Tran, L.T., Nguyen, T.M.T., Tran, T.T.T., Pham, M.T., Do, M.H. & Nguyen, D.L. 2014. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. Journal of Materials Science 49(16): 5617-5625.

Wei, X., Zhu, G., Fang, J. & Chen, J. 2013. Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles. International Journal of Photoenergy 2013: Article ID. 726872.

Wen, M., Liu, P., Xiao, S., Mori, K., Kuwahara, Y., Yamashita, H., Li, H. & Zhang, D. 2015. Uniform anatase single-crystal cubes with high thermal stability fully enclosed by active {010} and {001} facets. RSC Advances 5(15): 11029-11035.

Xiang, Q., Lv, K. & Yu, J. 2010. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental 96(3- 4): 557-564.

Xiaowei, L., Yanqiu, J., Wenjing, C., Yudong, L., Xianzhu, X. & Kaifeng, L. 2015. Mesoporous TiO2/carbon beads: One-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Letters 7(3): 243-254.

Xinwen, H. & Zongjian, L. 2013. Synthesis and growth mechanism of net-like titanate nanowire films via low-temperature and low-alkali-concentration route. Nano-Micro Letters 5(2): 93-100.

Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M. & Lu, G.Q. 2009. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. Journal of the American Chemical Society 131(11): 4078-4083.

Yifan, C., Jiahua, N., Hongliu, W., Ruopeng, Z., Changli, Z., Wenzhi, C., Feiqing, Z., Shaoxiang, Z. & Xiaonong, Z. 2015. Study of cell behaviors on anodized TiO2 nanotube arrays with coexisting multi-size diameters. Nano-Micro Letters 7: 215-225.

Yu, J., Fan, J. & Lv, K. 2010. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2(10): 2144-2149.

Yu, J.C., Zhang, L., Zheng, Z. & Zhao, J. 2003. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 15(11): 2280-2286.

Zhang, B., Wei, F., Wu, Q., Piao, L., Liu, M. & Jin, Z. 2015. Formation and evolution of the high-surface-energy facets of anatase TiO2. The Journal of Physical Chemistry C 119(11): 6094-6100.

 

 

*Corresponding author; email: tazliazizan@utp.edu.my

 

 

 

 

previous