Sains Malaysiana 46(12)(2017): 2515–2521
http://dx.doi.org/10.17576/jsm-2017-4612-29
Solvothermal Synthesis of Anatase
TiO2 Nanosheets with Exposed
{001} Facets
(Sintesis Solvoterma Anatase Helaian Nano TiO2 dengan Faset {001} Terdedah)
MADIHA YASIR1., M. TAZLI
AZIZAN1,3*,
ANITA
RAMLI2,3
& MARIAM AMEEN1
1Chemical Engineering Department,
Universiti Teknologi PETRONAS, 31750
Tronoh, Perak Darul Ridzuan,
Malaysia
2Department of Fundamental and Applied
Sciences, Universiti Teknologi
PETRONAS
32610 Bandar Seri Iskandar, Perak
Darul Ridzuan, Malaysia
3Center for Biofuel
and Biochemical Research (CBBR), Universiti Teknologi PETRONAS,
31750 Tronoh, Perak Darul Ridzuan, Malaysia
Received: 18 December 2015/Accepted:
5 September 2016
ABSTRACT
Enhancing the catalytic activity
of titania
(TiO2)
nanomaterials by controlling the size, surface area and percentage
of highly reactive exposed {001} facets has become attractive
in the recent years because of its wider applications in the
different fields of scientific research. In the present study,
anatase TiO2 nano-sized sheets (TNS) were synthesized using a
simple ethanol assisted solvothermal
chemical route. The TNS structures were characterized using Field Emission Scanning
Electron Microscopy (FE-SEM), Transmission electron
microscopic (TEM), Raman analysis, X-ray diffraction (XRD)
and Accelerated surface area and porosimetry
(ASAP)
analysis. The results from TEM, Raman and XRD analysis
confirmed the presence of anatase
crystalline structure of TNS with the size range of 20-40 nm. The synthesized TNS
structures possess 60% of highly reactive exposed
{001} facets with a total surface area of 73 m²/g. These tremendous
crystalline properties of solvothermally
synthesized TNS structure makes it as an attractive catalyst for environmental
and bio-fuel applications.
Keywords: Anatase TiO2; nanosheets;
solvothermal; {001} Facets
ABSTRAK
Peningkatan aktiviti perangsang menggunakan bahan nano titania
(TiO2) dengan mengawal saiz, permukaan dan peratusan
faset {001} terdedah
sangat reaktif telah menjadi tarikan
dalam beberapa
tahun kebelakangan kerana penggunaan yang lebih meluas dalam
perbezaan bidang
penyelidikan saintifik. Dalam kajian ini, helaian
bersaiz nano
anatase TiO2 (TNS)
telah disintesis
menggunakan laluan etanol mudah berbantu
kimia solvoterma.
Struktur TNS telah
dicirikan menggunakan
pancaran medan imbasan elektron mikroscopi (FE-SEM), elektron
penghantaran mikroskopik
(TEM),
analisis Raman, pembelauan
sinar-x (XRD) dan
kawasan permukaan
pecutan serta analisis
porosimetri (ASAP). Keputusan daripada
analisis TEM, Raman dan
XRD
mengesahkan kewujudan
struktur hablur
anatase TNS dengan
pelbagai julat
saiz 20-40 nm. Struktur sintesis TNS memiliki
60% daripada faset
{001} terdedah sangat reaktif dengan jumlah keluasan permukaan 73 m²/g. Sifat kristal solvoterma yang hebat daripada struktur TNS yang disintesis
menjadikannya sebagai
pemangkin menarik untuk alam sekitar
dan aplikasi
bio-bahan api.
Kata kunci: Anatase
TiO2; faset
{001}; helaian nano;
solvoterma
REFERENCES
An’Amt, M.N., Huang, N.M., Radiman, S., Lim,
H.N. & Muhamad, M.R. 2014. Triethanolamine-solution for rapid
hydrothermal synthesis of titanate
nanotubes. Sains Malaysiana 43(1):
137-144.
An, T., Chen, J., Nie,
X., Li, G., Zhang, H., Liu, X. & Zhao, H. 2012. Synthesis of carbon nanotube-anatase TiO2 sub-micrometer-sized
sphere composite photocatalyst for
synergistic degradation of gaseous styrene. ACS Applied
Materials & Interfaces 4(11): 5988-5996.
Biyoghe Bi
Ndong, L., Ibondou, M.P., Gu, X., Lu, S., Qiu, Z., Sui, Q. & Mbadinga,
S.M. 2014. Enhanced photocatalytic activity of TiO2 nanosheets by doping with cu for chlorinated solvent pollutants
degradation. Industrial and Engineering Chemistry Research
53(4): 1368-1376.
Cai, J.,
Huang, Z., Lv, K., Sun, J. & Deng,
K. 2014. Ti powder-assisted synthesis of Ti3+ self-doped
TiO2 nanosheets
with enhanced visible-light photoactivity.
RSC Advances 4(38): 19588-19593.
Cao, X., Tian, G., Chen, Y., Zhou, J.,
Zhou, W., Tian, C. & Fu, H. 2014. Hierarchical composites of
TiO2 nanowire arrays on reduced graphene
oxide nanosheets with enhanced photocatalytic
hydrogen evolution performance. Journal of Materials Chemistry
A 2(12): 4366-4374.
Chang, J.B., Liu, C.H., Liu, J., Zhou, Y.Y., Gao,
X. & Wang, S.D. 2015. Green-chemistry compatible approach
to TiO2-
supported PdAu bimetallic nanoparticles
for solvent-free 1-phenylethanol oxidation under mild conditions.
Nano- Micro Letters 7(3): 307-315.
Chao, C., Ren, Z., Yin, S., Xu, G., Gong, S., Yang, X., Li, X., Shen,
G. & Han, G. 2014. Dissolution/recrystallization
growth of titanate nanostructures
by amorphous precursor. Advanced
Powder Technology 25(2): 745-751.
Chen, C., Hu, X., Wang, Z., Xiong, X., Hu, P., Liu, Y. & Huang, Y. 2014. Controllable growth of TiO2-B nanosheet
arrays on carbon nanotubes as a high-rate anode material for
lithium-ion batteries. Carbon 69: 302-310.
Chu, M., Tang, Y., Rong,
N., Cui, X., Liu, F., Li, Y., Zhang, C., Xiao, P. & Zhang,
Y. 2016. Hydrothermal
synthesis, and tailoring the growth
of Ti-supported TiO2 nanotubes with thick tube walls.
Materials & Design 97: 257-267.
Dai, H., Zhou, Y., Chen, L., Guo, B., Li, A., Liu, J., Yu, T. & Zou, Z. 2013. Porous
ZnO nanosheet
arrays constructed on weaved metal wire for flexible dye-sensitized
solar cells. Nanoscale 5(11): 5102-5108.
Deng, L.J., Gu,
Y.Z., Xu, W.X. & Ma, Z.Y. 2014. Preparation
of TiO2 nanocrystals/graphene
composite and its photocatalytic performance. Chinese
Journal of Chemical Physics 27(3): 321-326.
Diebold, U. 2003. The surface science of titanium
dioxide. Surface Science Reports 48(5-8): 53-229.
Dozzi, M.V. & Selli, E. 2013. Specific
facets-dominated anatase TiO2:
Fluorine-mediated synthesis and photoactivity.
Catalysts 3(2): 455-485.
Gu, L.,
Wang, J., Cheng, H., Du, Y. & Han, X. 2012. Synthesis
of nano-sized anatase
TiO2 with
reactive {001} facets using lamellar protonated titanate
as precursor. Chemical Communications 48(55):
6978-6980.
Liu, S., Yu, J. & Jaroniec, M. 2011. Anatase
TiO2 with dominant high-energy {001}
facets: Synthesis, properties, and applications. Chemistry
of Materials 23(18): 4085-4093.
Lu, H., Wang, Y., Wang, Y., Liang, W. &
Yao, J. 2015. Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment.
RSC Advances 5(109): 89777-89782.
Madiha Yasir, S.C., Nurlidia
Mansor, Norani
Muti Mohamed & Yoshimitsu Uemura. 2014. Upgrading of pyrolysis
bio-oil to fuel over supported nanomaterials - A review. Applied
Mechanics and Materials 625: 357-360.
Madsen,
A.T., Ahmed, E.H., Christensen, C.H., Fehrmann,
R. & Riisager, A. 2011. Hydrodeoxygenation of waste fat for diesel production: Study
on model feed with Pt/alumina catalyst. Fuel 90(11):
3433-3438.
Noor, A.M., Ming,
H., Ngee, L., Radiman, S., Rahim,
S., Ahmad, S.I., Shamsudin, S.A.,
Yarmo, M.A. & Sajab,
M.S. 2013. Synthesis and morphology control
of TiO2 nano structures
via hydrothermal method for applications as electrodes in dye-sensitized
solar cells. Sains Malaysiana 42(7):
967-974.
Ou, H.H. & Lo,
S.L. 2007.
Review of titania
nanotubes synthesized via the hydrothermal treatment: Fabrication,
modification, and application. Separation and Purification
Technology 58(1): 179-191.
Reddy, K.M., Manorama, S.V. & Reddy, A.R. 2003. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry
and Physics 78(1): 239-245.
Ruso, J.M., Verdinelli,
V., Hassan, N., Pieroni, O. &
Messina, P.V. 2013. Enhancing CaP
biomimetic growth on TiO2 cuboids nanoparticles via
highly reactive facets. Langmuir 29(7): 2350-2358.
Shi, Q., Li, Y.,
Zhan, E., Ta, N. & Shen, W. 2014. Anatase TiO2
hollow nanosheets: Dual roles of F-,
formation mechanism, and thermal stability. CrystEngComm
16(16): 3431-3437.
Tian, F., Zhang,
Y., Zhang, J. & Pan, C. 2012. Raman spectroscopy: A new approach to measure the
percentage of anatase TiO2
exposed (001) facets. The Journal of Physical Chemistry C
116(13): 7515-7519.
Tsai, C.C. &
Teng, H. 2006. Structural features of nanotubes
synthesized from NaOH treatment on
TiO2 with different post-treatments. Chemistry
of Materials 18(2): 367-373.
Vaenas, N., Stergiopoulos,
T. & Falaras, P. 2015. Titania nanotubes for solar cell applications.
In Electrochemically Engineered Nanoporous
Materials: Methods, Properties & Application, edited
by Losic, D. & Santos, A. New York: Springer pp. 289-306.
Vu, T.H.T., Au,
H.T., Tran, L.T., Nguyen, T.M.T., Tran, T.T.T., Pham, M.T.,
Do, M.H. & Nguyen, D.L. 2014.
Synthesis of titanium dioxide nanotubes via
one-step dynamic hydrothermal process. Journal of
Materials Science 49(16): 5617-5625.
Wei, X., Zhu,
G., Fang, J. & Chen, J. 2013.
Synthesis, characterization, and photocatalysis
of well-dispersible phase-pure anatase
TiO2 nanoparticles. International Journal
of Photoenergy 2013: Article ID.
726872.
Wen, M., Liu,
P., Xiao, S., Mori, K., Kuwahara,
Y., Yamashita, H., Li, H. & Zhang, D. 2015.
Uniform anatase single-crystal cubes
with high thermal stability fully enclosed by active {010} and
{001} facets. RSC Advances 5(15): 11029-11035.
Xiang, Q., Lv, K. & Yu, J. 2010. Pivotal role
of fluorine in enhanced photocatalytic activity of anatase
TiO2 nanosheets with dominant
(0 0 1) facets for the photocatalytic degradation of acetone
in air. Applied Catalysis B: Environmental 96(3-
4): 557-564.
Xiaowei, L., Yanqiu, J., Wenjing, C., Yudong, L., Xianzhu, X. & Kaifeng,
L. 2015.
Mesoporous TiO2/carbon beads: One-pot preparation and their
application in visible-light-induced photodegradation.
Nano-Micro Letters 7(3): 243-254.
Xinwen, H. & Zongjian, L. 2013. Synthesis and growth mechanism of net-like titanate nanowire films via low-temperature and low-alkali-concentration
route. Nano-Micro Letters 5(2): 93-100.
Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G.,
Smith, S.C., Zou, J., Cheng, H.M. & Lu, G.Q. 2009. Solvothermal synthesis and photoreactivity of anatase TiO2
nanosheets with dominant {001} facets. Journal of
the American Chemical Society 131(11): 4078-4083.
Yifan, C., Jiahua,
N., Hongliu, W., Ruopeng,
Z., Changli, Z., Wenzhi,
C., Feiqing, Z., Shaoxiang,
Z. & Xiaonong, Z. 2015. Study
of cell behaviors on anodized TiO2 nanotube arrays
with coexisting multi-size diameters. Nano-Micro Letters
7: 215-225.
Yu, J., Fan, J.
& Lv, K. 2010. Anatase
TiO2 nanosheets with exposed
(001) facets: Improved photoelectric conversion efficiency in
dye-sensitized solar cells. Nanoscale 2(10): 2144-2149.
Yu, J.C., Zhang,
L., Zheng, Z. & Zhao, J. 2003. Synthesis and characterization of
phosphated mesoporous titanium dioxide
with high photocatalytic activity. Chemistry of Materials
15(11): 2280-2286.
Zhang, B., Wei,
F., Wu, Q., Piao, L., Liu, M. &
Jin, Z. 2015.
Formation and evolution of the high-surface-energy
facets of anatase TiO2. The Journal of Physical
Chemistry C 119(11): 6094-6100.
*Corresponding author;
email: tazliazizan@utp.edu.my