Sains Malaysiana 46(2)(2017): 223–229
http://dx.doi.org/10.17576/jsm-2017-4602-06
Physicochemical
Characteristics of Non-Starch Polysaccharides Extracted from Cassava Tubers
(Ciri Fizikokimia Polisakarida tak Berkanji yang Diekstrak
daripada Ubi Kayu)
UTHUMPORN, U.1*, NADIAH, I.1, IZZUDDIN, I.1, CHENG, L.H.1 & AIDA, H.2
1Food
Technology Division, School of Industrial Technology, Universiti Sains
Malaysia, 11800 Penang, Pulau Pinang, Malaysia
2Food
Technology Centre, MARDI Headquarters, Serdang, G.P.O. Box 12301, 50774 Kuala
Lumpur, Malaysia
Received:
23 May 2014/Accepted: 10 May 2016
ABSTRACT
This research mainly focused on isolation of non-starch
polysaccharide (NSP) from different parts of cassava
tuber by using water extraction and to evaluate the effect of NSP addition
into flour on nutritional composition, swelling and solubility, pasting
properties and dough characteristics by farinograph and extensograph. Three
origins of (NSP) extracted were used: cassava peels, coarse and fine
portions from cassava flesh. The isolation of NSP was
done by using water extraction method and designated as water-extractable (WEP)
and water un-extractable non starch polysaccharides (WUP).
The percentage yield of WEP (0.24 - 1.64%) from water
extraction was significantly lower as compared to WUP (2.58
- 4.33%). Upon the incorporation of 5% NSP, the cassava flour showed
lower moisture content compared to the sample without the addition of NSP,
while fats and crude fiber content of cassava flours were found to be increased
upon the incorporation of 5% NSP from all origins. Swelling
power and solubility of cassava flour were being reduced upon the incorporation
of 5% of NSP from cassava peel and coarse portion of cassava
flesh. The changes in dough characteristics showed that water absorption of the
samples upon the addition of 5% NSP into wheat flour was found
to be higher compared to control wheat flour. In contrast, dough stability and
extensibility, tolerance index, resistance to extension, as well as the work
input necessary for dough deformation from wheat flour with addition of 5% NSP resulted
lower than control wheat flour. Overall, NSP extracted from cassava
peels and coarse portion of cassava flesh performed similar characteristics and
functional properties upon the incorporation into the flour.
Keywords: Cassava; non starch polysaccharides; water extraction
ABSTRAK
Kajian ini tertumpu kepada pengekstrakan polisakarida tak berkanji
(NSP)
daripada ubi kayu dan menilai kesannya ke atas komposisi makanan, kuasa
pembengkakan dan keterlarutan, ciri kelikatan dan perubahan ciri doh melalui
‘farinograf’ dan ‘ekstensograf’. Tiga jenis NSP yang
diekstrak telah digunakan: kulit ubi kayu, bahagian kasar dan halus daripada
isi ubi kayu. Pengasingan NSP telah
dilakukan dengan menggunakan kaedah pengekstrakan air dan ditetapkan sebagai
pengekstrakan air (WEP) dan pengekstrakan air
polisakarida tak berkanji (WUP). Peratusan
bagi hasil WEP (0.24-1.64%) adalah lebih rendah berbanding dengan WUP (2.58
- 4.33%). Kandungan air didapati lebih rendah apabila tepung ubi kayu
ditambahkan dengan 5% NSP berbanding dengan sampel yang
tidak ditambahkan NSP, manakala kandungan lemak dan
serabut kasar didapati meningkat apabila ditambah dengan 5% NSP daripada
semua bahagian. Kuasa pembengkakan dan keterlarutan tepung
ubi kayu menunjukkan penurunan dengan penambahan 5% NSP daripada
kulit ubi kayu dan bahagian kasar isi ubi kayu. Perubahan
ke atas ciri doh didapati menunjukkan peningkatan kuasa penyerapan air apabila NSP ditambah
ke dalam tepung gandum berbanding tepung gandum kawalan. Namun, kestabilan doh, indeks toleransi, rintangan lanjutan serta
perkara yang diperlukan untuk mengubah bentuk doh daripada tepung gandum yang
ditambah dengan NSP telah memberi keputusan
berkurangan berbanding tepung gandum kawalan. Secara keseluruhan, NSP yang
diekstrak daripada kulit ubi kayu serta bahagian kasar daripada isi ubi kayu
menunjukkan sifat yang hampir sama apabila ditambahkan
ke dalam tepung.
Kata kunci: Pengekstrakan air; polisakarida tak
berkanji; ubi kayu
REFERENCES
Adetan,
D.A., Adekoya, L.O. & Aluko, O.B. 2003. Characterization of some properties
of cassava root tubers. Journal of Food Engineering 59: 349-353.
AOAC.
1996. Official Method of Analysis of the Association of Official Analytical
Chemists. 14th ed. Arlington, Virginia: AOAC International.
Aryee,
F.N.A., Oduro, I., Ellis, W.O. & Afuakwa, J.J. 2006. The
physicochemical properties of flour samples from the roots of 31 varieties of
cassava. Food Control 17: 916-922.
Charles, A.L., Huang, T.C., Lai, P.Y., Chen, C.C., Lee, P.P.
& Chang, Y.H. 2007. Study of wheat
flour-cassava starch composite mix and the function of cassava mucilage in
Chinese noodles. Food Hydrocolloids 21: 368-378.
Charoenkul, N., Uttapap, D., Pathipanawat, W. & Takeda,
Y. 2011. Physicochemical characteristics of
starches and flours from cassava varieties having different cooked root
textures. Food Science and Technology 44: 1774-1781.
Delcour,
J.A., Martens, A., Schellekens, M., De Geest, C. & Defloor, I. 1991. Emulsifiers and/ or extruded starch in the production of
breads from cassava. Cereal Chem. 64: 323-327.
Gomand,
S.V., Lamberts, L., Visser, R.G.F. & Delcour, J.A. 2010. Physicochemical
properties of potato and cassava starches and their mutants in relation to
their structural properties. Food Hydrocolloids 24: 424-433.
Mohan, B.H., Malleshi, N.G. & Koseki, T. 2010. Physico-chemical characteristics and non-starch polysaccharide
contents of Indica and Japonica brown rice and their malts. Food Science and Technology 43: 784-791.
Nindjin, C., Amani, G.N. & Sindic, M. 2011. Effect of blend levels on composite wheat doughs performance made from yam and
cassava native starches and bread quality. Carbohydrate Polymers 86:
1637-1645.
Rosell,
C.M., Rojas, J.A. & Benedito de Barber, C. 2001. Influence of hydrocolloids
on dough rheology and bread quality. Food Hydrocolloids 15: 75-81.
Sasaki, T., Kohyama, K. & Yasui, T. 2004. Effect of water-soluble and insoluble non-starch polysaccharides isolated from
wheat flour on the rheological properties of wheat starch gel. Carbohydrate
Polymers 57: 451-458.
Sasaki, T., Yasui, T. & Matsuki, J. 2000. Influence of non-starch polysaccharides isolated from wheat flour on the
gelatinization and gelation of wheat starches. Food Hydrocolloids 14:
295- 303.
Schoch,
T.J. 1964. Swelling power and solubility of granular starches. In Methods in Carbohydrate Chemistry, Vol. 4. edited by Whistler, R.L., Smith, R.J. & BeMiller, J.N.
New York: Academic Press. pp. 106-108.
Shyama,
P.R., Manohar, R.S. & Muralikrishna, G. 2004. Functional properties of
water-soluble non-starch polysaccharides from rice and ragi: Effect on dough
characteristics and baking quality. LWT 40: 1678-1686.
Sinha,
A.K., Kumar, V., Makkar, H.P.S., Boeck, G.D. & Becker, K. 2011. Non starch polysaccharides and their role in fish nutrition-
A review. Food Chemistry 127: 1409-1426.
Suba Rao, M.V.S.S.T., Sai Manohar, R. & Muralikrishna,
G. 2004. Functional characteristics of non-starch polysaccharides
(NSP) obtained from native (n) and malted (m) finger millet. Food Chemistry 88:
453-460.
Sun, R.C., Jones, G.L., Tomkinson, J. & Bolton, J. 1999. Fractional isolation and partial characterization of non-starch polysaccharides
and lignin from sago pith. Industrial Crops and Products 19: 211-220.
Swinkels,
J.J.M. 1985. Composition and properties of commercial native
starches. Starch/ Stäeke 37: 1-5.
Tester, R.F. & Morrison, W.R. 1990. Swelling and gelatinization of cereal starches 1. Effects of
amylopectin, amylose, and lipids. Cereal Chemistry 67: 551-557.
Tester, R.F. & Sommerville, M.D. 2003. The effects on non starch polysaccharides on the
extent of gelatinization, swelling and α-amylase hydrolysis of maize and
wheat starches. Food Hydrocolloids 17: 41-54.
Zaidul,
I.S.M., Nik Norulaini, N.A., Mohd. Omar, A.K., Yamauchi, H.
& Noda, T. 2007. RVA analysis of mixtures of wheat
flour and potato, sweet potato, yam, and cassava starches. Carbohydrate
Polymers 69: 784-791.
*Corresponding
author; email: sapina@usm.my
|