Sains Malaysiana 46(2)(2017): 349–358

http://dx.doi.org/10.17576/jsm-2017-4602-20

 

Dual Solutions of Forced Convection Flow along a Stretching Sheet with Variable Thickness in Presence of Free Stream and Magnetic Field

(Dual Penyelesaian Aliran Perolakan Dipaksa di Sepanjang Lembaran Regangan dengan Ketebalan Pemboleh Ubah dalam Kehadiran Aliran Bebas dan Medan Magnet)

 

UPENDRA MISHRA1* & GURMINDER SINGH2

 

1Department of Mathematics, Amity University Rajasthan, Jaipur, India

 

2Department of Applied Mathematics, Birla Institute of Technology (Ranchi), Ext. Center Jaipur, 27 Malviya Industrial Area, Jaipur-302017, India

Received: 9 November 2015/Accepted: 18 June 2016

 

ABSTRACT

The paper aims at studying forced convection in a viscous incompressible electrically conducting fluid along stretching sheet with variable thickness in the presence of variable free stream and magnetic field. The governing equations of flow and heat transfer are subjected to similarity transformation using boundary layer assumption and are then solved numerically. The system of equations possesses dual solutions for negative value of velocity power index (m). The impact of velocity parameter (λ) and other parameters on velocity and temperature distributions, skin friction and heat transfer are studied when system possesses dual solutions and is presented through graphs and discussed suitably. It is found that the first solution is in tune with natural physical phenomena. The second solution possesses very large skin-friction and fluid velocity as compared to the first solution. The second solution is stable and is a mere outcome of non-linearity and does not follow natural phenomena.

 

Keywords: Free stream; magnetic field; similarity solution; stretching surface; variable thickness

 

ABSTRAK

Kertas ini bertujuan mengkaji perolakan dipaksa dalam pengaliran bendalir likat tak termampat elektrik di sepanjang lembaran regangan dengan ketebalan pemboleh ubah dengan kehadiran pemboleh ubah aliran bebas dan medan magnet. Persamaan pemindahan haba dan aliran tertakluk kepada transformasi persamaan menggunakan andaian lapisan sempadan dan kemudian diselesaikan secara berangka. Sistem persamaan mempunyai dua penyelesaian untuk nilai negatif indeks tenaga halaju (m). Kesan parameter halaju (λ) dan lain-lain parameter ke atas halaju dan taburan suhu, geseran kulit dan pemindahan haba dikaji apabila sistem memiliki dual penyelesaian dan ditunjukkan melalui graf dan dibincangkan penyesuaiannya. Didapati bahawa penyelesaian yang pertama adalah sealiran dengan fenomena fizikal semula jadi. Penyelesaian yang kedua memiliki geseran kulit yang sangat besar dan halaju bendalir berbanding dengan penyelesaian yang pertama. Penyelesaian kedua adalah stabil dan hasil daripada kelinearan dan tidak mengikut fenomena semula jadi.

 

Kata kunci: Aliran bebas; medan magnet; penyelesaian persamaan; permukaan regangan; ketebalan pemboleh ubah

REFERENCES

Ahmad, S., Arifin, N.M., Nazar, R. & Pop, I. 2008. Mixed convection boundary layer flow along vertical thin needles: Assisting and opposing flows. Int. Commun. Heat Mass Transfer 35: 157-162.

Anjali Devi, S.P. & Prakash, M. 2014. Steady nonlinear hydromagnetic flow over a stretching sheet with variable thickness and variable surface temperature. Journal of the Korea Society for Industrial and Applied Mathematics 18(3): 245-256.

Bhattacharyya, K. 2013. Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux. Chinese Physics Letters B 22(7): 074705(1-6).

Fang, T., Zhang, Ji. & Zhong, Y. 2012. Boundary layer flow over a stretching sheet with variable thickness. Applied Mathematics and Computation 218: 7241-7252.

Ishak, A., Jafar, K., Nazar, R. & Pop, I. 2009. MHD stagnation point flow towards a stretching sheet. Physica A 388(13): 3377-3383.

Ishak, A., Nazar, R. & Pop, I. 2006. Mixed convection boundary layers in the stagnation-point flow toward a stretching sheet. Meccanica 41: 509-518.

Khader, M.M. & Megahed, A.M. 2013. Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. The European Physical Journal Plus 128: 100.

Lee, L.L. 1967. Boundary layer over a thin needle. Phys. Fluids 10(4): 822-828.

Mahapatra, T.R. & Gupta, A.S. 2002. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer 38: 517-521.

Mahapatra, T.R. & Gupta, A.S. 2001. Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mechanica 152: 191-196.

Pop, S.R., Grosan, T. & Pop, I. 2004. Radiation effect on the flow near the stagnation point of stretching sheet. Technische Mechanic 25: 100-106.

Sakiadis, B.C. 1961a. Boundary-layer behavior on continuous solid surface: I Boundary-layer equations for two-dimensional and axisymmetric flow. J. AIChe 7: 26-28.

Sakiadis, B.C. 1961b. Boundary-layer behavior on continuous solid surface: II Boundary-layer equations for two-dimensional and axisymmetric flow. J AIChe 7: 221-225.

Shufrin, I. & Eisenberger, M. 2005. Stability of variable thickness shear deformable plates-first order and high order analyses. Thin-Walled Struct. 43: 189-207.

Singh, G. & Sharma, P.R. 2009. Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet. Journal of Applied Fluid Mechanics 2(1): 13-21.

Subhashini, S.V., Sumathi, R. & Pop, I. 2013. Dual solution in the thermal diffusive flow over a stretching sheet with variable thickness. International Communications in Heat and Mass Transfer 48: 61-66.

Wang, C.Y. 1990. Mixed convection on a vertical needle with heated tip. Phys. Fluids A 2: 622-625.

 

 

*Corresponding author; email: dr_umishra@yahoo.com

 

 

 

previous