Sains Malaysiana 46(2)(2017): 349–358
http://dx.doi.org/10.17576/jsm-2017-4602-20
Dual
Solutions of Forced Convection Flow along a Stretching Sheet with Variable
Thickness in Presence of Free Stream and Magnetic Field
(Dual
Penyelesaian Aliran Perolakan Dipaksa di Sepanjang Lembaran Regangan dengan
Ketebalan Pemboleh Ubah dalam Kehadiran Aliran Bebas dan Medan Magnet)
UPENDRA MISHRA1*
& GURMINDER SINGH2
1Department of
Mathematics, Amity University Rajasthan, Jaipur, India
2Department of Applied
Mathematics, Birla Institute of Technology (Ranchi), Ext. Center Jaipur, 27 Malviya
Industrial Area, Jaipur-302017, India
Received: 9 November 2015/Accepted: 18 June 2016
ABSTRACT
The paper aims at studying forced convection in a viscous
incompressible electrically conducting fluid along stretching sheet with
variable thickness in the presence of variable free stream and magnetic field.
The governing equations of flow and heat transfer are subjected to similarity
transformation using boundary layer assumption and are then solved numerically.
The system of equations possesses dual solutions for negative value of velocity
power index (m). The impact of velocity parameter (λ) and other parameters
on velocity and temperature distributions, skin friction and heat transfer are
studied when system possesses dual solutions and is presented through graphs
and discussed suitably. It is found that the first solution is in tune with
natural physical phenomena. The second solution possesses very large
skin-friction and fluid velocity as compared to the first solution. The second
solution is stable and is a mere outcome of non-linearity and does not follow
natural phenomena.
Keywords: Free stream; magnetic field; similarity solution;
stretching surface; variable thickness
ABSTRAK
Kertas ini bertujuan mengkaji perolakan dipaksa dalam pengaliran
bendalir likat tak termampat elektrik di sepanjang lembaran regangan dengan
ketebalan pemboleh ubah dengan kehadiran pemboleh ubah aliran bebas dan medan magnet. Persamaan pemindahan haba
dan aliran tertakluk kepada transformasi persamaan menggunakan andaian lapisan
sempadan dan kemudian diselesaikan secara berangka. Sistem
persamaan mempunyai dua penyelesaian untuk nilai negatif indeks tenaga halaju
(m). Kesan parameter halaju (λ) dan lain-lain parameter ke atas
halaju dan taburan suhu, geseran kulit dan pemindahan haba dikaji apabila
sistem memiliki dual penyelesaian dan ditunjukkan melalui graf dan dibincangkan
penyesuaiannya. Didapati bahawa penyelesaian yang pertama
adalah sealiran dengan fenomena fizikal semula jadi. Penyelesaian
yang kedua memiliki geseran kulit yang sangat besar dan halaju bendalir
berbanding dengan penyelesaian yang pertama. Penyelesaian
kedua adalah stabil dan hasil daripada kelinearan dan tidak mengikut fenomena
semula jadi.
Kata kunci: Aliran bebas; medan magnet; penyelesaian persamaan; permukaan regangan;
ketebalan pemboleh ubah
REFERENCES
Ahmad, S., Arifin, N.M., Nazar, R.
& Pop, I. 2008. Mixed convection
boundary layer flow along vertical thin needles: Assisting and opposing flows. Int.
Commun. Heat Mass Transfer 35: 157-162.
Anjali Devi, S.P. & Prakash, M.
2014. Steady nonlinear hydromagnetic flow
over a stretching sheet with variable thickness and variable surface
temperature. Journal of the Korea Society for Industrial and Applied
Mathematics 18(3): 245-256.
Bhattacharyya, K. 2013. Heat transfer in boundary layer
stagnation-point flow towards a shrinking sheet with non-uniform heat flux. Chinese
Physics Letters B 22(7): 074705(1-6).
Fang, T., Zhang, Ji. & Zhong, Y. 2012. Boundary layer flow
over a stretching sheet with variable thickness. Applied Mathematics
and Computation 218: 7241-7252.
Ishak, A., Jafar, K., Nazar, R. &
Pop, I. 2009. MHD stagnation point flow towards a
stretching sheet. Physica A 388(13): 3377-3383.
Ishak, A., Nazar, R. & Pop, I.
2006. Mixed convection boundary layers in
the stagnation-point flow toward a stretching sheet. Meccanica 41:
509-518.
Khader, M.M. & Megahed, A.M. 2013. Numerical solution
for boundary layer flow due to a nonlinearly stretching sheet with variable
thickness and slip velocity. The European Physical Journal Plus 128:
100.
Lee, L.L. 1967. Boundary layer over a thin
needle. Phys. Fluids 10(4): 822-828.
Mahapatra, T.R. & Gupta, A.S. 2002. Heat transfer in
stagnation-point flow towards a stretching sheet. Heat and Mass Transfer 38:
517-521.
Mahapatra, T.R. & Gupta, A.S. 2001. Magnetohydrodynamic
stagnation-point flow towards a stretching sheet. Acta Mechanica 152:
191-196.
Pop, S.R., Grosan, T.
& Pop, I. 2004. Radiation effect on the flow near the
stagnation point of stretching sheet. Technische Mechanic 25:
100-106.
Sakiadis, B.C. 1961a. Boundary-layer behavior on continuous
solid surface: I Boundary-layer equations for two-dimensional and axisymmetric
flow. J. AIChe 7: 26-28.
Sakiadis, B.C. 1961b. Boundary-layer behavior on continuous
solid surface: II Boundary-layer equations for two-dimensional and axisymmetric
flow. J AIChe 7: 221-225.
Shufrin, I. & Eisenberger, M. 2005. Stability of variable thickness shear deformable
plates-first order and high order analyses. Thin-Walled Struct. 43:
189-207.
Singh, G. & Sharma, P.R. 2009. Effects of variable
thermal conductivity and heat source/sink on MHD flow near a stagnation point
on a linearly stretching sheet. Journal of Applied Fluid Mechanics 2(1):
13-21.
Subhashini, S.V., Sumathi, R. & Pop, I. 2013. Dual solution in the thermal diffusive flow over a stretching sheet
with variable thickness. International Communications in Heat and
Mass Transfer 48: 61-66.
Wang, C.Y. 1990. Mixed convection on a
vertical needle with heated tip. Phys. Fluids A 2: 622-625.
*Corresponding
author; email: dr_umishra@yahoo.com
|