Sains Malaysiana 46(6)(2017): 903–908
http://dx.doi.org/10.17576/jsm-2017-4606-09
Analysis of Biofilms Formation by Cronobacter sp. during Growth in Infant Formula Milk
(Analisis Pembentukan Biofilem oleh Cronobacter sp. sewaktu Pertumbuhan di dalam Susu Formula Kanak-kanak)
AISHAH FAIQAH MOHD YUSOF1, PRANESHA PRABHAKARAN1, NUR DIYANA AZLI3, NORRAKIAH
ABDULLAH SANI2 & WAN SYAIDATUL AQMA1*
1School of Biosciences and
Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2School of Chemical
Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department of
Biotechnology, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan,
Pahang Darul Makmur, Malaysia
Received: 19 February
2016/Accepted: 14 December 2016
ABSTRACT
Pacifier nipples are
in permanent contact with saliva and with the oral microflora
therefore, act as a favoured site
for the growth of biofilms. This research was conducted to identify
the bacterial biofilms that has been found on the pacifiers that
collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant
formula milk. Pacifiers collected were analysed
to obtain colony forming unit (CFU) and isolated bacteria were
identified using several biochemical tests according to Bergey's
Manual. Biofilm assay of three Cronobacter
sp. were conducted using 24 wells microtiter plate and stained
with 1% of crystal violet solution at different time interval:
6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension
was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric
substances (EPS) analysis was done to identify percentage of carbohydrate
and protein content by using phenol sulphuric
acid method and Bradford method, respectively. The results obtained
showed that the normal microflora bacteria were the most abundant
microorganisms that were found on the pacifier with the main genus
isolated was Staphylococcus sp., Enterobacteriaceae
sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter
sakazakii formed a strong biofilms
after 18 h, with carbohydrate was identified as main component
of EPS.
Keywords: Cell
surface hydrophobicity; extracellular polymeric substances (EPS); Staphylococcus sp.
ABSTRAK
Puting mempunyai sentuhan
kekal dengan
air liur dan mikroflora
oral yang menjadikannya tapak
untuk pertumbuhan
biofilem. Kajian ini dijalankan
untuk mengenal
pasti bakteria biofilem yang terdapat pada puting yang diperoleh dari pusat jagaan kanak-kanak
setempat dan
untuk menganalisis pembentukan biofilem oleh Cronobacter sp. sewaktu pertumbuhan
di dalam formula susu kanak-kanak. Unit penghasilan koloni
telah dianalisis
daripada puting dan bakteria dikenal
pasti melalui
kaedah biokimia berdasarkan Bergey's Manual.
Asai biofilem
tigaCronobacter sp. telah dilakukan menggunakan piring microtiter
24 telaga menggunakan pewarnaan ungu hablur 1% pada kala masa: 6,
12, 18 dan 24 jam. Hidrofobisiti permukaan sel
dinilai menggunakan kaedah pelekatan bakteria pada hidrokarbon
(BATH).
Analisis
bahan polimerik ekstrasel (EPS) dijalankan
untuk mengenal
pasti peratus kandungan
karbohidrat dan
protein menggunakan kaedah fenol asid sulfurik
dan kaedah
Bradford. Hasil kajian
menunjukkan kebanyakan bakteria yang dipencil daripada puting adalah mikroflora normal dengan genus utama adalah daripada Staphylococcus
sp. Berdasarkan analisis
biofilem dan
EPS
menunjukkan Cronobacter
sakazakii mempunyai
kekuatan penghasilan biofilem pada 18 jam dengan kandungan utama adalah karbohidrat.
Kata kunci: Bahan
polimerik ekstrasel (EPS); hidrofobisiti
permukaan sel; Staphylococcus
sp.
REFERENCES
Adair,
S.M. 2003. Pacifier use in children: A review of recent literature. Paediatric Dentistry 25(5): 449-458.
Basson,
A., Flemming, L. & Chenia,
H. 2008. Evaluation of adherence, hydrophobicity,
aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial Ecology 55(1):
1-14.
Bin,
Z., Baosheng, S., Min, J., Taishi,
G. & Zhenghong, G. 2008. Extraction and analysis of extracellular polymeric substances in membrane
fouling in submerged Mbr. Desalination 227(1):
286-294.
Blood-Siegfried,
J. 2009. The role of infection and
inflammation in sudden infant death syndrome. Immunopharmacology and Immunotoxicology31(4): 516-523.
Bradford,
M.M. 1976. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of protein-dye
binding. Analytical Biochemistry 72(1): 248-254.
Brook,
I. & Gober, A.E. 1997. Bacterial colonization of pacifiers of infants with acute otitis
media. The Journal of Laryngology & Otology 111(07): 614-615.
Comina,
E., Marion, K., Renaud, F.N., Dore, J., Bergeron, E. & Freney,
J. 2006. Pacifiers: A microbial reservoir. Nursing &
Health Sciences 8(4): 216-223.
Costerton,
J.W., Stewart, P.S. & Greenberg, E.P. 1999. Bacterial
biofilms: A common cause of persistent infections. Science 284(5418):
1318-1322.
Czaczyk,
K. & Myszka, K. 2007. Biosynthesis of extracellular polymeric substances (EPS) and its
role in microbial biofilm formation. Polish Journal of Environmental
Studies 16(6): 799.
Dancer,
G.I., Mah, J.H. & Kang, D.H. 2009. Influences of milk components on biofilm formation of Cronobacter spp. (Enterobacter sakazakii). Letters in Applied Microbiology 48(6):
718-725.
Holt,
J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T.
& William, S.T. 1994. Bergey’s Manual of Determinative Bacteriology Baltimore. Philadelphia: Lippincott
Williams and Wilkins.
Jain,
A. & Bhosle, N.B. 2008. Role of B 1-4 Linked
polymers in the biofilm structure of marine Pseudomonas spp. CE-2 on 304 stainless steel. Biofouling 24(4): 283-290.
Jain,
A., Nishad, K.K. & Bosle,
N.B. 2007. Effects of DNP on the cell surface properties of marine bacteria and
its implication for adhesion to surfaces. Biofouling 23(3-4): 171-177.
Karunakaran,
E., Mukherjee, J., Ramalingam, B. & Biggs, C.A.
2011. Applied Microbiology and Biotechnology 90: 1869-1881.
Mattos-Graner,
R.O., De Moraes, A.B., Rontani,
R. & Birman, E.G. 2000. Relation of oral
yeast infection in Brazilian infants and use of a pacifier. ASDC
Journal of Dentistry for Children 68(1): 33-36.
Mohamed,
J.A., Huang, W., Nallapareddy, S.R., Teng, F. & Murray, B.E. 2004. Influence of origin of
isolates, especially endocarditis isolates, and various genes on biofilm
formation by Enterococcus faecalis. Infection
and Immunity 72(6): 3658-3663.
Molepo,
J. & Molaudzi, M. 2015. Contamination and disinfection of silicone pacifiers: An in vitro study. South African Dental Journal 70(8): 351-353.
Nelson-Filho, P., Louvain, M.C., Macari,
S., Lucisano, M.P., Silva, R.A.B.D., Queiroz, A.M.D., Gaton-Hernandez,
P. & Silva, L.A.B.D. 2015. Microbial
contamination and disinfection methods of pacifiers. Journal of
Applied Oral Science 23(5): 523-528.
Nwodo,
U.U., Green, E. & Okoh, A.I. 2012. Bacterial exopolysaccharides: Functionality and prospects. International
Journal of Molecular Sciences 13(11): 14002-14015.
Orimadegun,
A.E. & Obokon, G.O. 2015. Prevalence of non-nutritive sucking habits and potential
influencing factors among children in urban communities in Nigeria. Frontiers
in Paediatrics3: 30.
O’toole,
G., Kaplan, H.B. & Kolter, R. 2000. Biofilm formation as microbial development. Annual
Reviews in Microbiology 54(1): 49-79.
Pal,
A. & Paul, A.K. 2008. Microbial extracellular polymeric
substances: Central elements in heavy metal bioremediation. Indian Journal
of Microbiology 48(1): 49-64.
Shin,
H., Kang, S. & Nam, S. 2001. Effect of carbohydrate and protein in the EPS on sludge settling
characteristics. Water Science & Technology 43(6): 193-196.
Singha,
T.K. 2012. Microbial extracellular polymeric substances:
Production, isolation and applications. IOSR Journal of Pharmacy 2(2):
271-281.
*Corresponding
author; email: syaidatul@ukm.edu.my