Sains Malaysiana 46(9)(2017): 1393–1399
http://dx.doi.org/10.17576/jsm-2017-4609-06
Facile Synthesis of AgCl/BiYO3 Composite for Efficient Photodegradation of
RO16 under UV and
Visible Light Irradiation
(Sintesis Mudah Komposit AgCl/BiYO3 untuk Fotodegradasi
Cekap RO16
di bawah Sinaran UV dan Cahaya Boleh
Lihat)
URAIWAN
SIRIMAHACHAI*,
HUSNA
HAROME
& SUMPUN WONGNAWA
Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science
Prince of Songkla University,
Kanjanawanich Rd., Kohong, Hatyai, Songkhla, 90110, Thailand
Received: 31 August 2016/Accepted:
17 January 2017
ABSTRACT
AgCl/BiYO3 composite
was successfully synthesized via the aqueous precipitation method
followed by calcination. The varied amount of AgCl (10, 20 and
30%) was mixed into BiYO3 via
sonochemical-assisted method. The structures and morphologies
of the as-prepared AgCl/BiYO3 composite
were characterized by x-ray diffraction (XRD), scanning electron microscopy
(SEM) and UV-vis diffused reflectance spectroscopy
(UV-vis DRS). The optical absorption spectrum
of AgCl/BiYO3 composite
showed strong absorption in visible region. The photocatalytic
activity of AgCl/BiYO3 composite was evaluated by the
photodegradation of reactive orange16 (RO16), which was selected
to represent the dye pollutants, under UV and visible light irradiation. The
results indicated that 20% AgCl/BiYO3 photocatalyst
was the most capable photocatalyst in this series in the degradation
of RO16
under both UV and visible light illumination within 1 h. Moreover,
the mechanism of photocatalytic degradation of AgCl/BiYO3 was
elucidated using three types of free radical scavengers. The significant
enhancement was attributed to the formation of AgCl/BiYO3 heterojunction
resulting in the low electron-hole pair recombination rate.
Keywords: BiYO3;
photocatalyst; visible light
ABSTRAK
Komposit AgCl/BiYO3 telah berjaya disintesis melalui
kaedah pemendakan akueus diikuti dengan pengkalsinan. Jumlah berbeza
AgCl (10, 20 dan 30%) dicampur ke dalam BiYO3 melalui
kaedah sonokimia berbantu. Struktur dan morfologi disediakan sebagai
komposit AgCl/BiYO3 telah dicirikan oleh pembelauan
sinar-x (XRD), microskopi elektron pengimbasan
(SEM)
dan spektroskopi UV-vis pantulan resapan (UV-vis
DRS).
Spektrum penyerapan optik komposit AgCl/BiYO3 menunjukkan
penyerapan yang kuat di kawasan boleh nampak. Aktiviti fotomangkinan
komposit AgCl/BiYO3 dinilai melalui fotodegradasi
reaktif jingga16 (RO16) yang telah dipilih bagi mewakili
bahan cemar pewarna, di bawah UV dan penyinaran cahaya boleh
nampak. Keputusan menunjukkan bahawa 20% fotomangkin AgCl/BiYO3 adalah
fotomangkin paling efektif dalam siri ini dalam degradasi RO16
di bawah kedua-dua UV dan penyinaran cahaya boleh nampak
dalam tempoh 1 jam. Selain itu, mekanisme degradasi fotomangkinan
AgCl/BiYO3 telah
diterangkan menggunakan tiga jenis pemangsa radikal bebas. Peningkatan
ketara ini disebabkan oleh pembentukan hetero-simpang AgCl/BiYO3 yang
mengakibatkan kadar penggabungan semula pasangan lohong elektron
adalah rendah.
Kata kunci: BiYO3; cahaya
boleh nampak; fotomangkin
REFERENCES
Cao, J., Xu, B., Luo, B., Lin, H. & Chen, S. 2011. Preparation,
characterization and visible-light photocatalytic activity of
AgI/AgCl/TiO2. Applied Surface Science 257:
7083-7089.
Cai, P., Zhou, S.M., Ma, D.K., Liu, S.N., Chen, W. & Huang, S.M.
2015. Fe2O3-modified
porous BiVO4nanoplates with enhanced photocatalytic activity. Nano-Micro
Letter 7: 183-193.
Chen, C., Ma, W. & Zhao, J. 2010. Semiconductor-mediated photodegradation
of pollutants under visible-light irradiation. Chemical Society
Reviews 39: 4206-4219.
Cheng, F.H., Huang, B.B., Dai, Y., Qi, Y.X. & Zhang, Y.X. 2010.
One-step synthesis of the nanostructured AgCl/BiOI composites
with highly enhanced visible-light photocatalytic performance.
Langmuir 26: 6618-6624.
Cheng, Y., Wang, H., Zhu, Y., Liao, F., Li, Z. & Li, J 2015.
One-step hydrothermal synthesis of BiVO4-Bi2O3 p-n
heterojunction composites and their enhanced photocatalysis properties.
Journal of Material Science: Material Electron 26: 1268-1274.
Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. 2010. Recent developments
in photocatalytic water treatment technology: A review. Water
Research 44: 2997-3027.
Dong, X., Ding, W., Zhang, X. & Liang, X. 2007. Mechanism and
kinetics model for degradation of synthetic dyes by UV-Vis/H2O2/ferrioxallate
complexes. Dye and Pigments 74: 470-476.
Gaya, I.U. 2014. Heterogeneous Photocatalysis using Inorganic
Semiconductor Solids. Dordrecht: Springer Netherlands. pp.
23-26 and 43-71.
Hu, X., Li, G. & Yu, J.C. 2010. Design, fabrication and modification
of nanostructured semiconductor materials for environmental and
energy applications. Langmuir 26: 3031-3039.
Lin, H.L., Cao, J., Luo, B.D., Xu, B.Y. & Chen, S.F. 2012. Visible-light
photocatalytic activity and mechanism of novel AgBr/ BiOBr prepared
by deposition-precipitation. Chinese Science Bulletin 57:
2901-2907.
Pan, L., Hu, B., Zhu, X., Chen, X., Shang, J., Tan, H., Xue, W.,
Zhu, Y., Liu, G. & Li, W.R. 2013. Role of oxadiazole moiety
in different D-A polyazothines and related resistive switching
properties. Journal of Material Chemistry C 1: 4556-4564.
Qin, Z., Liu, Z., Liu, Y. & Yang, K. 2009. Synthesis of BiYO3 for
degradation of organic compounds under visible-light irradiation.
Catalysis Communication 10: 1604-1608.
Qin, Z., Tian, H., Su, T., Ji, H. & Guo, Z. 2016. Soft template
inducted hydrothermal BiYO3 catalysts
for enhanced formic acid formation from the photocatalytic reduction
of carbon dioxide. RSC Advances 6: 52665-62673.
Sood, S., Umar, A., Mehta, S.K. & Kansal, S.K. 2015. a-Bi2O3 nanorod:
An efficient sunlight active photocatalyst for degradation of
Rhodamine B and 2,4,6-trichlorophenol. Ceramics International
41: 3355-3364.
Tariq, M.A., Faisal, M., Muneer, M. & Bahnemann, D. 2007. Photochemical
reactions of a few selected pesticide derivatives and other priority
organic pollutants in aqueous suspensions of titanium dioxide.
Journal of Molecular Catalysis A: Chemical 265: 231-236.
Wang, D.W., Huang, Q.F., Lin, P.X. & Yang, H.J. 2008. Visible-light-responsive
photocatalystxBiOBr-(1-x)BiOI. Catalysis Communication
9: 8-12.
Wu, C., Chang, H. & Chen, J. 2006. Basic dye decomposition kinetics
in a photocatalytic slurry reactor. Journal of Hazardous Materials
B 137: 336-343.
Wu, M., Xu, D., Lou, B., Shen, H., Wang, C. & Shi, W. 2015. Synthesis
of BiYO3 nanorods with visible-light photocatalytic
activity for the degradation of tetracycline. Materials Letters
161: 45-48.
Xu, C.Y., Hu, S.P., Zhang, B.Y., Pei, Y. & Zhen, L. 2014. Solvothermal
synthesis of Bi2O2CO3 nanoplates
for efficient photodegradation of RhB and phenol under simulated
solar light irradiation. Bulletin of Korean Chemical Society
35: 2935-2940.
Xu, H., Yan, J., Xu, Y., Song, Y., Li, H., Xia, J., Huang, C. &
Wan, H. 2013. Novel visible-light-driven AgX/graphite-like C3N4 (X=
Br, I) hybrid materials with synergistic photocatalytic activity.
Applied Catalysis B: Environmental 129: 182-193.
Xu,
L., Lu, H., Wei, B., Zhang, M., Gao, H. & Sun, W. 2014. Enhanced
photosensitization process induced by the p-n junction of Bi2O2CO3/BiOCl
heterojunctions on the degradation of rhodamine B. Applied
Surface Science 303: 360-366.
Xue, B., Sun, T., Wu,
J., Mao, F. & Yang, W. 2015. AgCl/TiO2 nanocomposites:
Ultrasound-assisted preparation, visible-light induced photocatalytic
degradation of methyl orange and antibacterial activity. Ultrasonics
Sonochemistry 22: 1-6.
Yan, J., Wang, C., Xu,
H., Xu, Y., She, X., Chen, J. & Song, Y. 2013. AgI/Ag3PO4
heterojunction composites with enhanced photocatalytic activity
under visible light irradiation. Applied Surface Science 287:
178-186.
Zhou, B., Zhao, X., Liu,
H., Qu, J. & Huang, C.P. 2011. Synthesis of visible-light
sensitive M-BiVO4 (M = Ag, Co, and Ni) for the photocatalytic
degradation of organic pollutants. Separation and Purification
Technology 77: 275-282.
*Corresponding
author; email: uraiwan.s@psu.ac.th