Sains Malaysiana 46(9)(2017): 1393–1399

http://dx.doi.org/10.17576/jsm-2017-4609-06

 

Facile Synthesis of AgCl/BiYO3 Composite for Efficient Photodegradation of RO16 under UV and Visible Light Irradiation

(Sintesis Mudah Komposit AgCl/BiYO3 untuk Fotodegradasi Cekap RO16 di bawah Sinaran UV dan Cahaya Boleh Lihat)

 

URAIWAN SIRIMAHACHAI*, HUSNA HAROME & SUMPUN WONGNAWA

 

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science

Prince of Songkla University, Kanjanawanich Rd., Kohong, Hatyai, Songkhla, 90110, Thailand

 

Received: 31 August 2016/Accepted: 17 January 2017

 

ABSTRACT

AgCl/BiYO3 composite was successfully synthesized via the aqueous precipitation method followed by calcination. The varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3 via sonochemical-assisted method. The structures and morphologies of the as-prepared AgCl/BiYO3 composite were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/BiYO3 composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3 composite was evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants, under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover, the mechanism of photocatalytic degradation of AgCl/BiYO3 was elucidated using three types of free radical scavengers. The significant enhancement was attributed to the formation of AgCl/BiYO3 heterojunction resulting in the low electron-hole pair recombination rate.

 

Keywords: BiYO3; photocatalyst; visible light

 

ABSTRAK

Komposit AgCl/BiYO3 telah berjaya disintesis melalui kaedah pemendakan akueus diikuti dengan pengkalsinan. Jumlah berbeza AgCl (10, 20 dan 30%) dicampur ke dalam BiYO3 melalui kaedah sonokimia berbantu. Struktur dan morfologi disediakan sebagai komposit AgCl/BiYO3 telah dicirikan oleh pembelauan sinar-x (XRD), microskopi elektron pengimbasan (SEM) dan spektroskopi UV-vis pantulan resapan (UV-vis DRS). Spektrum penyerapan optik komposit AgCl/BiYO3 menunjukkan penyerapan yang kuat di kawasan boleh nampak. Aktiviti fotomangkinan komposit AgCl/BiYO3 dinilai melalui fotodegradasi reaktif jingga16 (RO16) yang telah dipilih bagi mewakili bahan cemar pewarna, di bawah UV dan penyinaran cahaya boleh nampak. Keputusan menunjukkan bahawa 20% fotomangkin AgCl/BiYO3 adalah fotomangkin paling efektif dalam siri ini dalam degradasi RO16 di bawah kedua-dua UV dan penyinaran cahaya boleh nampak dalam tempoh 1 jam. Selain itu, mekanisme degradasi fotomangkinan AgCl/BiYO3 telah diterangkan menggunakan tiga jenis pemangsa radikal bebas. Peningkatan ketara ini disebabkan oleh pembentukan hetero-simpang AgCl/BiYO3 yang mengakibatkan kadar penggabungan semula pasangan lohong elektron adalah rendah.

 

Kata kunci: BiYO3; cahaya boleh nampak; fotomangkin

REFERENCES

Cao, J., Xu, B., Luo, B., Lin, H. & Chen, S. 2011. Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Applied Surface Science 257: 7083-7089.

Cai, P., Zhou, S.M., Ma, D.K., Liu, S.N., Chen, W. & Huang, S.M. 2015. Fe2O3-modified porous BiVO4nanoplates with enhanced photocatalytic activity. Nano-Micro Letter 7: 183-193.

Chen, C., Ma, W. & Zhao, J. 2010. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews 39: 4206-4219.

Cheng, F.H., Huang, B.B., Dai, Y., Qi, Y.X. & Zhang, Y.X. 2010. One-step synthesis of the nanostructured AgCl/BiOI composites with highly enhanced visible-light photocatalytic performance. Langmuir 26: 6618-6624.

Cheng, Y., Wang, H., Zhu, Y., Liao, F., Li, Z. & Li, J 2015. One-step hydrothermal synthesis of BiVO4-Bi2O3 p-n heterojunction composites and their enhanced photocatalysis properties. Journal of Material Science: Material Electron 26: 1268-1274.

Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. 2010. Recent developments in photocatalytic water treatment technology: A review. Water Research 44: 2997-3027.

Dong, X., Ding, W., Zhang, X. & Liang, X. 2007. Mechanism and kinetics model for degradation of synthetic dyes by UV-Vis/H2O2/ferrioxallate complexes. Dye and Pigments 74: 470-476.

Gaya, I.U. 2014. Heterogeneous Photocatalysis using Inorganic Semiconductor Solids. Dordrecht: Springer Netherlands. pp. 23-26 and 43-71.

Hu, X., Li, G. & Yu, J.C. 2010. Design, fabrication and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26: 3031-3039.

Lin, H.L., Cao, J., Luo, B.D., Xu, B.Y. & Chen, S.F. 2012. Visible-light photocatalytic activity and mechanism of novel AgBr/ BiOBr prepared by deposition-precipitation. Chinese Science Bulletin 57: 2901-2907.

Pan, L., Hu, B., Zhu, X., Chen, X., Shang, J., Tan, H., Xue, W., Zhu, Y., Liu, G. & Li, W.R. 2013. Role of oxadiazole moiety in different D-A polyazothines and related resistive switching properties. Journal of Material Chemistry C 1: 4556-4564.

Qin, Z., Liu, Z., Liu, Y. & Yang, K. 2009. Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation. Catalysis Communication 10: 1604-1608.

Qin, Z., Tian, H., Su, T., Ji, H. & Guo, Z. 2016. Soft template inducted hydrothermal BiYO3 catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. RSC Advances 6: 52665-62673.

Sood, S., Umar, A., Mehta, S.K. & Kansal, S.K. 2015. a-Bi2O3 nanorod: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceramics International 41: 3355-3364.

Tariq, M.A., Faisal, M., Muneer, M. & Bahnemann, D. 2007. Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide. Journal of Molecular Catalysis A: Chemical 265: 231-236.

Wang, D.W., Huang, Q.F., Lin, P.X. & Yang, H.J. 2008. Visible-light-responsive photocatalystxBiOBr-(1-x)BiOI. Catalysis Communication 9: 8-12.

Wu, C., Chang, H. & Chen, J. 2006. Basic dye decomposition kinetics in a photocatalytic slurry reactor. Journal of Hazardous Materials B 137: 336-343.

Wu, M., Xu, D., Lou, B., Shen, H., Wang, C. & Shi, W. 2015. Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline. Materials Letters 161: 45-48.

Xu, C.Y., Hu, S.P., Zhang, B.Y., Pei, Y. & Zhen, L. 2014. Solvothermal synthesis of Bi2O2CO3 nanoplates for efficient photodegradation of RhB and phenol under simulated solar light irradiation. Bulletin of Korean Chemical Society 35: 2935-2940.

Xu, H., Yan, J., Xu, Y., Song, Y., Li, H., Xia, J., Huang, C. & Wan, H. 2013. Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity. Applied Catalysis B: Environmental 129: 182-193.

Xu, L., Lu, H., Wei, B., Zhang, M., Gao, H. & Sun, W. 2014. Enhanced photosensitization process induced by the p-n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B. Applied Surface Science 303: 360-366.

Xue, B., Sun, T., Wu, J., Mao, F. & Yang, W. 2015. AgCl/TiO2 nanocomposites: Ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity. Ultrasonics Sonochemistry 22: 1-6.

Yan, J., Wang, C., Xu, H., Xu, Y., She, X., Chen, J. & Song, Y. 2013. AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation. Applied Surface Science 287: 178-186.

Zhou, B., Zhao, X., Liu, H., Qu, J. & Huang, C.P. 2011. Synthesis of visible-light sensitive M-BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants. Separation and Purification Technology 77: 275-282.

 

*Corresponding author; email: uraiwan.s@psu.ac.th

 

 

 

 

previous