Sains Malaysiana 46(9)(2017): 1465–1469

http://dx.doi.org/10.17576/jsm-2017-4609-15

 

Effect of Storage Time and Concentration of Used Cooking Oil on Polyhydroxyalkanoates (PHAs) Production by Cupriavidus necator H16

(Kesan Masa Penyimpanan dan Kepekatan Minyak Masak Terpakai Terhadap Pengeluaran

Polihidroksyalkanoat melalui Cupriavidus necator H16)

 

CHATSUDA KONGPENG1, JUTARUT IEWKITTAYAKORN1 & WILAIWAN CHOTIGEAT1,2*

 

1Department of Molecular Biotechnology and Bioinformatics, Faculty of Science

Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

2Center of Excellent for Genomics & Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

Received: 31 August 2016/Accepted: 17 January 2017

 

ABSTRACT

Polyhydroxyalkanoates (PHAs) can be used to replace petrochemical plastics in many applications. However, their production has limitation due to production cost. This research was conducted using alternative carbon source from waste to synthesize PHAs by Cupriavidus necator H16. In this study, PHAs were produced from used cooking oil (UCO) and compared with production PHAs from palm oil. Two UCO storage times (4 and 10 weeks) and three UCO concentrations (10, 20 and 30 g/L) were used to determine the most optimum condition for PHA synthesis. The best optimum condition for PHA synthesis was cultivated in the medium containing 30 g/L of UCO at 4 weeks storage. The cell dry weight (CDW) and PHA content were 5.26±0.61 g/L and 27.36±2.04 wt. %, respectively. These results were similar to cell cultivation using 20 g/L palm oil and 1% of fructose (5.93±0.33 g/L of CDW and 26.96±6.14 wt. % of PHA contents). In addition, PHA content from the culture with 10 g/L of UCO stored for 10 weeks was higher than PHA content from the culture with 20 and 30 g/L of UCO. Thus, it can be concluded that UCO could be used in PHA production.

 

Keywords: Bioplastics; Cupriavidus necator H16; polyhydroxyalkanoates (PHAs); used cooking oil (UCO)

 

ABSTRAK

Polihidroksialkanoat (PHA) boleh digunakan untuk menggantikan plastik petrokimia dalam kebanyakan aplikasi. Walau bagaimanapun, pengeluarannya mempunyai had kerana kos pengeluaran. Kajian ini dijalankan menggunakan sumber karbon alternatif daripada bahan buangan untuk mensintesis PHA menggunakan Cupriavidus necator H16. Dalam kajian ini, PHAs dihasilkan daripada minyak masak terpakai (UCO) dan dibandingkan dengan pengeluaran PHA daripada minyak sawit. Dua masa simpanan UCO (dua 4 dan 10 minggu) serta tiga kepekatan UCO (10, 20 dan 30 g/L) telah digunakan untuk menentukan syarat keadaan optimum untuk sintesis PHA. Keadaan optimum terbaik untuk sintesis PHA ialah dieram pada medium yang mengandungi 30 g/L UCO pada 4 minggu penyimpanan. Berat sel kering (CDW) dan kandungan PHA masing-masing adalah 5.26±0.61 g/L dan 27.36±2.04 % bt. Keputusan ini adalah sama dengan penanaman sel menggunakan 20 g/L minyak sawit dan 1% fruktosa (5.93±0.33 g/L CDW dan 26.96±6.14 % bt. kandungan PHA). Di samping itu, kandungan PHA daripada kultur dengan 10 g/L UCO yang disimpan selama 10 minggu adalah lebih tinggi daripada kandungan PHA yang dikultur dengan 20 dan 30 g/L UCO. Oleh itu, dapat disimpulkan bahawa UCO boleh digunakan dalam pengeluaran PHA.

 

Kata kunci: Bioplastik; minyak masak terpakai (UCO); Necator cupriavidus H16; polihidroksialkanoat (PHA)

 

 

REFERENCES

 

Batcha, A.F.M., Prasad, D.M.R., Khan, M.R. & Abdullah, H. 2014. Biosynthesis of poly (3-hydroxybutyrate) (PHB) by Cupriavidus Necator H16 from Jatropha oil as carbon source. Bioprocess and Biosystems Engineering 37(5): 943-951.

Bhubalan, K., Chuah, J.A., Shozui, F., Brigham, C.J., Taguchi, S., Sinskey, A.J., Rha, C. & Sudesh, K. 2011. Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium Sp. Strain USM2. Applied and Environmental Microbiology 77(9): 2926-2933.

Cai, Z.Z., Wang, Y., Teng, Y.L., Chong, K.M., Wang, J.W., Zhang, J.W. & Yang, D.P. 2015. A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Processing Technology 137: 186-193.

Castilho, L.R., Mitchell, D.A. & Freire, D.M. 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 100(23): 5996-6009.

Chee, J.Y., Yoga, S.S., Lau, N.S., Ling, S.C., Abed, R.M.M. & Sudesh, K. 2010. Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. In Current Research, Technology and Education Topics in Applied Microbiology and Applied Biotechnology, edited by Mendez- Vilas, A. Spain: Formatex Research Center. pp. 1395-1404.

Dawes, E.A. & Senior. P.J. 1973. The role and regulation of energy reserve polymers in micro-organisms. Advances in Microbial Physiology 10: 135-266.

Eggink, G., van der Wal, H. Huijberts, G.N.M. & de Waard, P. 1992. Oleic acid as a substrate for Poly-3-Hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Industrial Crops and Products 1(2-4): 157-163.

Franz, A., Rehner, R., Kienle, A. & Hartmut, G. 2010. Growth and PHA production of wild-type Ralstonia eutropha H16 using glucose and fructose as single carbon substrates. www. researchgate.net/publication/45940713_Growth_and_PHA_ production_of_wild-type_Ralstonia_eutropha_H16_using_ glucose_and_fructose_as_single_carbon_substrates

Fukui, T. & Doi, Y. 1998. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Applied Microbiology and Biotechnology 49(3): 333-336.

Kek, Y.K. 2009. Utilization of Palm Oil-Based by-Products and Waste as Feedstock for Polyhydroxyalkanoate Biosynthesis. Master of Science thesis (Unpublished).

Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. & Witholt, B. 1988. Formation of polyesters by Pseudomonas Oleovorans: Effect of substrates on formation and composition of poly- (R)-3-Hydroxy-alkanoates and poly- (R)- 3-hydroxyalkenoates. Applied and Environmental Microbiology 54(12): 2924-2932.

Madison, L.L. & Huisman, G.W. 1999. Metabolic engineering of poly (3-hydroxyalkanoates): From DNA to plastic. Microbiology and Molecular Biology Reviews 63(1): 21-53.

Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A. & Uddin, S. 2014. Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods 6: 4956-4963.

Martino, L., Cruz, M.V., Scoma, A., Freitas, F., Bertin, L., Scandola, M. & Reisb, M.A.M. 2014. Recovery of amorphous polyhydroxy-butyrate granules from Cupriavidus necator cells grown on used cooking oil. International Journal of Biological Macromolecules 71: 117-123.

Oyem, H.H. 2011. Monitoring the free fatty acid level of crude palm oil stored under light of different wavelenghts. American Journal of Food Technology 6(8): 701-704.

Teoh, C.H. 2002. The Palm Oil Industry in Malaysia: From Seed to Frying Pan. WWF Switzerland.

Verlinden, R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Piotrowska-Seget, Z. & Radecka, I.K. 2011. Production of Polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1: 11. doi:10.1186/2191-0855-1-11.

 

 

*Corresponding author; email: wilaiwan58@hotmail.com

 

 

 

previous