Sains Malaysiana 46(9)(2017): 1465–1469
http://dx.doi.org/10.17576/jsm-2017-4609-15
Effect
of Storage Time and Concentration of Used Cooking Oil on Polyhydroxyalkanoates
(PHAs) Production by Cupriavidus necator H16
(Kesan
Masa Penyimpanan dan Kepekatan Minyak Masak Terpakai Terhadap Pengeluaran
Polihidroksyalkanoat
melalui Cupriavidus necator H16)
CHATSUDA KONGPENG1, JUTARUT IEWKITTAYAKORN1 & WILAIWAN CHOTIGEAT1,2*
1Department of Molecular
Biotechnology and Bioinformatics, Faculty of Science
Prince of Songkla
University, Hat Yai, Songkhla 90112, Thailand
2Center of Excellent for
Genomics & Bioinformatics Research, Faculty of Science, Prince of Songkla
University, Hat Yai, Songkhla 90112, Thailand
Received: 31 August
2016/Accepted: 17 January 2017
ABSTRACT
Polyhydroxyalkanoates (PHAs)
can be used to replace petrochemical plastics in many applications. However,
their production has limitation due to production cost. This research was
conducted using alternative carbon source from waste to synthesize PHAs
by Cupriavidus necator H16. In this study, PHAs
were produced from used cooking oil (UCO) and compared with
production PHAs from palm oil. Two UCO storage
times (4 and 10 weeks) and three UCO concentrations (10, 20 and
30 g/L) were used to determine the most optimum condition for PHA synthesis.
The best optimum condition for PHA synthesis was cultivated in
the medium containing 30 g/L of UCO at 4 weeks storage. The
cell dry weight (CDW) and PHA content
were 5.26±0.61 g/L and 27.36±2.04 wt. %, respectively. These results were
similar to cell cultivation using 20 g/L palm oil and 1% of fructose (5.93±0.33
g/L of CDW and 26.96±6.14 wt. % of PHA contents).
In addition, PHA content from the culture with 10 g/L of UCO stored
for 10 weeks was higher than PHA content from the culture
with 20 and 30 g/L of UCO. Thus, it can be concluded that UCO could
be used in PHA production.
Keywords: Bioplastics; Cupriavidus
necator H16; polyhydroxyalkanoates (PHAs); used cooking oil (UCO)
ABSTRAK
Polihidroksialkanoat (PHA)
boleh digunakan untuk menggantikan plastik petrokimia dalam kebanyakan
aplikasi. Walau bagaimanapun, pengeluarannya mempunyai had kerana kos
pengeluaran. Kajian ini dijalankan menggunakan sumber karbon alternatif
daripada bahan buangan untuk mensintesis PHA menggunakan Cupriavidus
necator H16. Dalam kajian ini, PHAs dihasilkan daripada minyak
masak terpakai (UCO) dan dibandingkan dengan
pengeluaran PHA daripada minyak sawit. Dua masa simpanan UCO (dua
4 dan 10 minggu) serta tiga kepekatan UCO (10, 20 dan 30 g/L) telah
digunakan untuk menentukan syarat keadaan optimum untuk sintesis PHA.
Keadaan optimum terbaik untuk sintesis PHA ialah dieram pada medium
yang mengandungi 30 g/L UCO pada 4 minggu penyimpanan. Berat
sel kering (CDW) dan kandungan PHA masing-masing adalah
5.26±0.61 g/L dan 27.36±2.04 % bt. Keputusan ini adalah sama dengan penanaman
sel menggunakan 20 g/L minyak sawit dan 1% fruktosa (5.93±0.33 g/L CDW dan
26.96±6.14 % bt. kandungan PHA). Di samping itu, kandungan PHA daripada
kultur dengan 10 g/L UCO yang disimpan selama 10 minggu
adalah lebih tinggi daripada kandungan PHA yang dikultur dengan 20 dan
30 g/L UCO. Oleh itu, dapat disimpulkan bahawa UCO boleh
digunakan dalam pengeluaran PHA.
Kata kunci: Bioplastik; minyak masak terpakai (UCO); Necator
cupriavidus H16; polihidroksialkanoat (PHA)
REFERENCES
Batcha, A.F.M., Prasad,
D.M.R., Khan, M.R. & Abdullah, H. 2014. Biosynthesis of poly
(3-hydroxybutyrate) (PHB) by Cupriavidus Necator H16 from Jatropha oil
as carbon source. Bioprocess and Biosystems Engineering 37(5): 943-951.
Bhubalan, K., Chuah,
J.A., Shozui, F., Brigham, C.J., Taguchi, S., Sinskey, A.J., Rha, C. &
Sudesh, K. 2011. Characterization of the highly active polyhydroxyalkanoate
synthase of Chromobacterium Sp. Strain USM2. Applied and
Environmental Microbiology 77(9): 2926-2933.
Cai, Z.Z., Wang, Y.,
Teng, Y.L., Chong, K.M., Wang, J.W., Zhang, J.W. & Yang, D.P. 2015. A
two-step biodiesel production process from waste cooking oil via recycling
crude glycerol esterification catalyzed by alkali catalyst. Fuel Processing
Technology 137: 186-193.
Castilho, L.R.,
Mitchell, D.A. & Freire, D.M. 2009. Production of polyhydroxyalkanoates
(PHAs) from waste materials and by-products by submerged and solid-state
fermentation. Bioresour. Technol. 100(23): 5996-6009.
Chee, J.Y., Yoga, S.S.,
Lau, N.S., Ling, S.C., Abed, R.M.M. & Sudesh, K. 2010. Bacterially produced
polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. In Current Research, Technology and Education Topics in Applied Microbiology
and Applied Biotechnology, edited by Mendez- Vilas, A. Spain: Formatex
Research Center. pp. 1395-1404.
Dawes, E.A. &
Senior. P.J. 1973. The role and regulation of energy reserve polymers in
micro-organisms. Advances in Microbial Physiology 10: 135-266.
Eggink, G., van der Wal,
H. Huijberts, G.N.M. & de Waard, P. 1992. Oleic acid as a substrate for
Poly-3-Hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas
putida. Industrial Crops and Products 1(2-4): 157-163.
Franz, A., Rehner, R.,
Kienle, A. & Hartmut, G. 2010. Growth and PHA production of wild-type Ralstonia
eutropha H16 using glucose and fructose as single carbon substrates. www.
researchgate.net/publication/45940713_Growth_and_PHA_ production_of_wild-type_Ralstonia_eutropha_H16_using_
glucose_and_fructose_as_single_carbon_substrates
Fukui, T. & Doi, Y.
1998. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes
eutrophus and its recombinant strain. Applied Microbiology and Biotechnology 49(3): 333-336.
Kek, Y.K. 2009.
Utilization of Palm Oil-Based by-Products and Waste as Feedstock for
Polyhydroxyalkanoate Biosynthesis. Master of Science thesis (Unpublished).
Lageveen, R.G., Huisman,
G.W., Preusting, H., Ketelaar, P., Eggink, G. & Witholt, B. 1988. Formation
of polyesters by Pseudomonas Oleovorans: Effect of substrates on
formation and composition of poly- (R)-3-Hydroxy-alkanoates and poly- (R)-
3-hydroxyalkenoates. Applied and Environmental Microbiology 54(12):
2924-2932.
Madison, L.L. &
Huisman, G.W. 1999. Metabolic engineering of poly (3-hydroxyalkanoates): From
DNA to plastic. Microbiology and Molecular Biology Reviews 63(1): 21-53.
Mahesar, S.A., Sherazi,
S.T.H., Khaskheli, A.R., Kandhro, A.A. & Uddin, S. 2014. Analytical
approaches for the assessment of free fatty acids in oils and fats. Analytical
Methods 6: 4956-4963.
Martino, L., Cruz, M.V.,
Scoma, A., Freitas, F., Bertin, L., Scandola, M. & Reisb, M.A.M. 2014.
Recovery of amorphous polyhydroxy-butyrate granules from Cupriavidus necator cells grown on used cooking oil. International Journal of Biological
Macromolecules 71: 117-123.
Oyem, H.H. 2011.
Monitoring the free fatty acid level of crude palm oil stored under light of
different wavelenghts. American Journal of Food Technology 6(8):
701-704.
Teoh, C.H. 2002. The
Palm Oil Industry in Malaysia: From Seed to Frying Pan. WWF Switzerland.
Verlinden, R.A.J., Hill,
D.J., Kenward, M.A., Williams, C.D., Piotrowska-Seget, Z. & Radecka, I.K.
2011. Production of Polyhydroxyalkanoates from waste frying oil by Cupriavidus
necator. AMB Express 1: 11. doi:10.1186/2191-0855-1-11.
*Corresponding author; email: wilaiwan58@hotmail.com